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Abstract

The local false discovery rate (lfdr) of Efron et al. (2001) enjoys major conceptual and

decision-theoretic advantages over the false discovery rate (FDR) as an error criterion in

multiple testing, but is only well-defined in Bayesian models where the truth status of

each null hypothesis is random. We define a frequentist counterpart to the lfdr based on

the relative frequency of nulls at each point in the sample space. The frequentist lfdr is

defined without reference to any prior but preserves important properties of the Bayesian

lfdr: For continuous test statistics, lfdr(t) gives the probability, conditional on observing

some statistic equal to t, that the corresponding null hypothesis is true. Evaluating the

lfdr at an individual test statistic yields a calibrated forecast of whether its null hypothesis

is true. Our definition arises naturally from compound decision theory, yielding the best

separable decision rule under the weighted classification loss, and it can be estimated

efficiently in finite samples using parametric or non-parametric methods. Whereas the

FDR measures the average quality of all discoveries in a given rejection region, our lfdr

measures how the quality of discoveries varies across the rejection region, allowing for a

more fine-grained analysis.

1 Introduction

Suppose that we are testing a scientific hypothesis, and observe a z-statistic equal to 3.

How confidently can we reject the corresponding null hypothesis in favor of the alternative?

This simple and natural question could hardly be better crafted to embarrass frequentist

statisticians. Notwithstanding the common misinterpretation of the p-value (in this case

roughly 0.0027) as the posterior probability that the null is true in light of the data, calculating

this probability in fact requires further information, namely the prior probability that the

null is true and the distribution of the test statistic under the alternative. Bayesians are

willing to supply these quantities, but face other difficulties: different observers’ subjective

beliefs may vary widely, and many scientists resist granting that the truth or falsehood of

a concrete scientific hypothesis is a random variable that rises and falls according to an

observer’s prejudices (Goodman, 1999; Savage, 1972).
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Figure 1: Microbiome preservation example. The left panel shows the histogram form = 1147

stratified permutation test p-values comparing relative abundance in fresh vs. eight-week-old

samples, along with a nonparametric estimate of the null and alternative components of the

mixture density via the empirical Bayes estimator of Strimmer (2008). The right panel shows

the corresponding estimates of the local false discovery rate and tail false discovery rate. Due

to the taxonomic structure in the data and the correlations between different species, it

would be difficult to justify these lfdr estimates in a Bayesian analysis, but they have natural

interpretations in our frequentist framework.

Both frequentists and Bayesians are better positioned to answer the question when the

hypothesis is one of many, as long as the other hypotheses are relevant: that is, the cases

are sufficiently alike to justify a combined analysis. Then, hierarchical or empirical Bayesian

methods are appealing because they effectively replace the analyst’s prior with one that is

learned from the data. However, these methods still require the analyst to model the truth

status of individual hypotheses as random variables, and to mathematically formalize the

assumption of relevance, typically by assuming either that the hypotheses (as well as the test

statistics) are exchangeable, or by introducing a parametric model for their dependence. In

a concrete scientific context where the hypotheses are not perfectly alike a priori, these may

be difficult assumptions for the analyst to accept.

Frequentists can circumvent the need for priors by controlling the false discovery rate

(FDR), which measures the expected fraction of true nulls among hypotheses with test

statistics falling into the rejection region of a multiple testing procedure (Benjamini and

Hochberg, 1995). The q-values of Storey (2002) even give a kind of FDR estimate for indi-

vidual hypotheses. However, instead of answering our original question, q-values answer a

substantively different one, roughly: among all hypotheses with test statistics as extreme or

more extreme than this one, what fraction are true nulls? As we discuss in Section 6, these

are two very different questions. Misinterpreting the q-value as a measure of confidence in a

given discovery would make us systematically, and often severely, over-optimistic.

In this work we propose a new answer to our motivating question that blends the Bayesian
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and frequentist approaches. Suppose that we observe m test statistics z1, . . . , zm for null

hypotheses H1, . . . ,Hm, of which m0 are true nulls. For i = 1, . . . ,m, let f (i)(t) denote

the density of zi, and define the (frequentist) local false discovery rate (lfdr) as the relative

frequency of null test statistics at each point in the sample space:

lfdr(t) :=
∑

i:Hi is true

f (i)(t)

/ m∑
i=1

f (i)(t). (1)

If m is large, this ratio is approximately the proportion of nulls among all hypotheses

whose test statistics fall in a small neighborhood around t.

In the common case where the null test statistics share the same density f0, we have the

simpler expression

lfdr(t) = π̄0f0(t)
/
f̄(t), (2)

where π̄0 := m0/m is the true null proportion, and

f̄(t) :=
1

m

m∑
i=1

f (i)(t)

is the average density.

The null density f0 could, for example, represent the standard Gaussian distribution on

the real line R, if the statistics are z-values, or the uniform distribution on the unit interval

[0, 1] if they are p-values. Let Z generically denote the common sample space where z1, . . . , zm
are realized. For simplicity of exposition, we will assume throughout that the test statistics

are continuous, but most of our results extend naturally to discrete sample spaces.

Readers familiar with Efron et al. (2001) will note that the expression (2) appears nearly

identical to the definition of lfdr in the Bayesian two-groups model (which we review in

Section 3.1), but there are key differences. Perhaps most importantly, our lfdr is defined

without reference to any Bayesian prior; it depends only on the marginal densities of the m

statistics. As such, our definition of lfdr(t) does not represent a Bayesian posterior probability

that Hi is true given zi = t. In our frequentist model, that probability is always either zero

or one.

However, the frequentist lfdr does answer our motivating question, in a sense: it represents

the conditional probability, given that some test statistic equals t, that the corresponding

null hypothesis is true:

lfdr(t) = P(HJ is true | zJ = t, for some J). (3)

If the conditional probability in (3) at first appears paradoxical in our frequentist setting,

note that the truth status of HJ is random because the index J is random. We prove the

relation (3) in Section 3, where we compare our lfdr with the Bayesian lfdr in more detail.

In Section 3.2, we establish two other appealing properties of the lfdr that reinforce its

conceptual usefulness: First, we show that lfdr(z1), . . . , lfdr(zm) are calibrated “forecasts”

for the truth of H1, . . . ,Hm. The lfdr function gives the sharpest forecasts of any calibrated

transformation from the sample space Z to the unit interval.
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Second, we show that our lfdr arises naturally in compound decision theory for multiple

testing: if a Type I error is λ times as costly as a Type II error, the best separable rejection

rule (the best rule where we decide whether to reject Hi using only zi) rejects Hi if and only

if lfdr(zi) ≤ 1/(1+λ) — coinciding with the optimal decision rule in a Bayesian model where

lfdr(zi) represents the Bayesian posterior probability that Hi is true.

Although the frequentist lfdr depends on unknown quantities, it can usually be estimated

efficiently from the data if m is reasonably large and the dependence between test statistics

is not too strong. In the formulation (2), f0 is typically known, and π̄0 can be conservatively

bounded above by 1 or estimated using standard techniques, leaving only the problem of

estimating the average density f̄ . Section 5 discusses approaches to this problem based on

standard parametric or nonparametric methods for density estimation in the i.i.d. setting,

and argues classical empirical Bayes methods commonly applied under the two-groups model

can be understood as estimates of the frequentist lfdr. Section 6 shows that the support

line procedure of Soloff et al. (2024), which is closely related to Strimmer’s monotone lfdr

estimator Strimmer (2008), succeeds in finite samples at controlling the boundary FDR, an

error criterion closely related to the lfdr, provided the statistics are independent p-values.

The next section discusses two motivating examples in which the frequentist lfdr is a

useful concept to have available.

2 Motivating examples

2.1 Example 1: Gaussian graphical model

The Gaussian graphical model is an example of a setting where the frequentist lfdr is useful

because the Bayesian approach requires complicated modeling, and the q-value approach is

inherently biased.

In this model, the data arrive as n i.i.d. copies of

X ∼ N(0,Ω−1),

where Ω is a d×d dimensional precision matrix. This matrix encodes conditional dependence

relationships between the coordinates of X as follows: Ωi,j is zero when the ith and jth

coordinate of X are conditionally independent, given the rest of the coordinates. To decide

whether or not to reject the null hypothesis:

Hij : Ωij = 0, i ̸= j

we may compute a t-statistic on n− d degrees from the linear model obtained by regressing

Xj against X−j , taking tij to be the standardized coefficient for Xi in the fitted model.

For each pair (i, j), we have Ωij = Ωji and tij = tji so the total number of hypotheses

is
(
d
2

)
. It would be inappropriate to model the t-statistics as independent, since tij and tjk

being large and positive is informative about the value of tik. In general, tij is not a sufficient

statistic for testing Hij , and the posterior probability of the null Hij could be a complicated

function of the entire sample covariance matrix.
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Figure 2: Histogram of t-statistics in the GGM example, with dimensions: d = 80, n = 10d,

m = 3, 160. The null distribution is tn−d.

We can bypass some of these stumbling blocks by calculating a frequentist q-value for each

t-statistic, but this can also be misleading. In general, the q-value for tij substantially under-

estimates the chance that Hij is true. Figure 2 shows part of the histogram of t-statistics

generated from the previously described regression method in a Gaussian graphical model

with d = 80 and n = 10d. Looking at the histogram, it is clear that we can estimate a local

null proportion based on the t-statistics. To do so, we first calculate the expected number

of null observations at, e.g. t = 3. Overlaid in red is the Student-tn−d density weighted by

the number of true nulls, in this case m0 = 0.95m. Dividing by the height of the histogram

there yields a rough and ready estimate of the lfdr. Compared to the BH q-value, which is

around 6% for a t-statistic near 3, the histogram-based estimate of the lfdr is much higher,

closer to 20%. Without a Bayesian prior on the entries of Ω, we are somehow still able to

quantify our confidence in a typical null hypothesis whose t-statistic is near 3. We discuss

several interpretations in Section 3.

In the next section, we analyze a real dataset from biology to further illustrate interesting

distinctions between our approach and others.

2.2 Example 2: Microbiome data analysis

This section discusses a data set from Song et al. (2016) on storage techniques for biological

samples in microbiome analysis. In scientific investigations with microbiome data, it can be

necessary to store biological samples for some period of time after collection. A key question

about the integrity of the subsequent analysis is whether the relative abundance of different

microbial species shifts significantly during the storage period, and whether some storage

methods are better than others.

In the data set we analyze, fecal samples from six human participants were stored in 95%

ethanol solution, with microbial abundances measured using DNA sequencing techniques,
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both when the sample was fresh and after eight weeks of storage, with five replications of

measurements per participant in each storage condition. In each replication, and for each

of 9719 microbial species1, the relative abundance in each fecal sample is measured as the

number of individual bacteria in that species sequenced divided by the total number of

bacteria. For each species, we can use a permutation test to assess the null hypothesis that

its relative abundance is unchanged after eight weeks of storage.

Due to the careful experimental design, a stratified permutation test is well-suited to

test the hypothesis that the relative abundance of a given species is independent of the

storage condition (fresh or eight weeks old) given the identity of the human participant. We

calculate a p-value pi for species i based on the Wilcoxon signed rank statistic, where ranks

are calculated for the relative abundance of that species within each stratum. Because some

species are sparsely observed, we restrict our analysis to the m = 1147 species for which

the relative abundance is above zero in at least ten total replications. The permutation test

is marginally valid for each species, under a generic nonparametric model. Figure 1 shows

the p-value histogram as well as a nonparametric estimate for the lfdr and tail FDR, due to

Strimmer (2008). To believe in these estimates we need rely only on the assumption that

the null p-values are approximately uniform, and that the heights of the histogram bars are

informative about the mixture density (or more precisely that the empirical CDF is a good

estimator for the true mixture CDF). Both assumptions appear sensible in this case without

our needing to appeal to a Bayesian model.

By contrast, it would be highly challenging to specify a convincing Bayesian model for

the joint distribution of 9719 species’ relative abundances under the two storage conditions.

In particular, given the taxonomic structure of the different species, it is highly unlikely that

the true effects of storage on each species are exchangeable, or that the observed relative

abundances are independent conditional on the true effects. By shifting to our frequentist

perspective, we can sidestep the difficulties of Bayesian modeling.

3 Interpreting the frequentist lfdr

3.1 Review of the Bayes two-groups model

In prior work, the local false discovery rate has been defined with respect to Bayesian models.

The most well-known of these is the so-called Bayesian two-groups model of Efron et al. (2001).

In that model, each hypothesis has an independent chance π0 of being true, and the statistic

zi is distributed according to density f0(t) if Hi is true, and f1(t) otherwise.

The Bayesian local false discovery rate is defined as the posterior probability that Hi is

true in light of the data:

lfdr∗(t) := P(Hi is true | zi = t) = π0f0(t)
/
f(t), (4)

1We use the same method as the original investigators for operationally defining “species,” which are

referred to more precisely as operational taxonomic units in the microbiome literature.
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where f(t) = π0f0(t)+(1−π0)f1(t) is the marginal density of z1, . . . , zm. To avoid confusion,

we use an asterisk to distinguish the Bayesian lfdr from our frequentist lfdr.

When π0, f0, and f1 are fixed and known, the posterior probabilities lfdr∗(z1), . . . , lfdr
∗(zm)

fully describe the posterior, and they represent the sharpest calibrated forecasts for the truth

status of the hypotheses H1, . . . ,Hm (Dawid, 1982; Gupta et al., 2020). They also have a

natural interpretation in decision theory. For a decision rule δ that returns an accept/reject

decision for each hypothesis, define the weighted classification loss, which penalizes the ana-

lyst λ for false positives and false negatives at different rates:

Lλ(H, δ) := λ · (#false positives) + (#false negatives),

where a false positive occurs when δ rejects a true Hi, and a false negative occurs when δ

accepts a false Hi. A straightforward calculation shows that the risk-minimizing rule is to

reject Hi if and only if lfdr∗(zi) is below 1/(1 + λ) (Sun and Cai, 2007).

This rejection rule is especially simple to interpret when the statistics are p-values with

uniform null density f0(t) ≡ 1 on Z = [0, 1], in which case this rule equates to rejecting Hi

whenever zi is observed in a region with density f(t) ≥ (1 + λ)π0. For example, if a false

positive is λ = 4 times as costly as a false negative, then we should reject when lfdr∗(zi) ≤ 0.2,

or equivalently when f(zi) ≥ 5 · π0.
The intimate connection between the Bayesian lfdr and the marginal density f has a

very convenient consequence in the empirical Bayes setting where f1 and π0 are unknown.

If π0 ≈ 1, then estimating the marginal density f(t) from the i.i.d. sample z1, . . . , zm is

nearly equivalent to estimating lfdr∗(t), and determining the optimal rejection rule amounts

to finding a super-level set of f .

In the two-groups model, these interpretations of the Bayesian lfdr are all easy conse-

quences of standard Bayesian calculations. None of them carry over directly to our frequen-

tist model: if the truth status of H1, . . . ,Hm is fixed, then (i) the probability Hi is true in

light of the data is always 0 or 1, (ii) the optimal forecasting rule is to forecast that the true

hypotheses are true and the false ones are false, and (iii) the best decision rule for any λ is to

reject the false hypotheses and accept the true ones. Nevertheless, all three properties of the

Bayesian lfdr have close analogs in our frequentist model, as we explore in the next section.

3.2 Three interpretations of the frequentist lfdr

Section 1 gave three interpretations of the frequentist lfdr that are close analogs of properties

enjoyed by the Bayesian lfdr. We now review and elaborate on them:

Interpretation 1: Conditional probability. For a fixed value t ∈ Z, lfdr(t) is the

conditional probability that a hypothesis with test statistic equal to t is a true null.

Theorem 3.1. Suppose z1, . . . , zm are jointly absolutely continuous. Then

lfdr(t) = P(HJ is true | zJ = t, for some J).

where J is the (random) index of the statistic with zJ = t.
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When Z is discrete (in which case f0 and f represent probability mass functions) this

property does not generalize directly in the way we might initially expect: conditional on the

event that at least one index J has zJ = t, the probability that a randomly selected one is

truly null is not in general equal to lfdr(t). Instead, we have

lfdr(t) =
E[#{j : zj = t,Hj true}]

E[#{j : zj = t}]
.

This ratio is closely related to the marginal false discovery rate (mFDR). See Section 4 for

further discussion of connections between the lfdr, FDR, and mFDR.

Interpretation 2: Calibrated forecast. The lfdr evaluated at the observed statistics

z1, . . . , zm makes calibrated forecasts for the truth of the null hypotheses H1, . . . ,Hm, where

a function g : R → [0, 1] is said to be calibrated if

P(HJ is true | g(zJ) = α, for some J) = α.

Theorem 3.2. Let ℓi := lfdr(zi) for i = 1, . . . ,m and suppose z1, . . . , zm are jointly absolutely

continuous. Then

P(HJ is true | ℓJ = α, for some J) = α,

for any α ∈ range(lfdr). Furthermore, lfdr is the finest calibrator in the following sense: if

g : R → [0, 1] is calibrated, then for any t,

g(t) = E(lfdr(zI) | g(zI) = g(t)), (5)

where I ∼ Uniform{1, . . . ,m}.

Interpretation 3: Optimal rejection rule. Thresholding lfdr(zi) at 1/(1 + λ) gives the

optimal separable rejection rule for testing H1, . . . ,Hm under the weighted classification loss

with weight λ.

For a decision rule δ(z1, . . . , zm) ∈ {reject, accept}m, the weighted classification risk is

minimized over separable decision rules by the one that thresholds the frequentist lfdr.

Theorem 3.3. If δ is a separable decision rule, i.e. δi(z1, . . . , zm) = g(zi) for some univariate

function g, then

ELλ(H, δ) ≥ ELλ(H, d∗),

where

d∗(zi) =

{
reject if lfdr(zi) ≤ 1

1+λ

accept otherwise.
(6)
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3.3 Limitations

The previous section discussed three interpretations of the frequentist lfdr. In practice, lfdr

depends on unknown quantities such as π̄0 and f̄ that must be estimated. Density estimation

is a difficult problem in general, and therefore estimating the lfdr can be hard, especially when

the test-statistics are dependent. We discuss the problem of estimating the lfdr in section 5,

and in particular how empirical Bayes estimates target the frequentist lfdr when observations

are non-i.i.d.

Another limitation of our lfdr function is that it doesn’t account for additional informa-

tion known by the analyst. The conditional probability interpretation only applies to an

analyst who doesn’t know which null hypothesis corresponds to the test-statistic realized at,

e.g. zJ = 3. The analyst who does know which HJ has zJ = 3 may arrive at a different

conclusion, particularly if their prior is non-exchangeable. A large difference between these

two conclusions suggests that we might be better off analyzing the hypotheses in sub-groups,

conditional on some covariate.

Our last interpretation assumes separability of our decision rule, but this restriction is

somewhat artificial. In the absence of covariates, we could instead restrict to permutation

equivariant (PE) rules, which implies that the rejection threshold depends only on the set

of values {z1, . . . , zm} and not on the order in which they are observed. In large samples

with independent observations, the best PE decision rule is close to the best separable rule,

mirroring a well-known phenomenon in the empirical Bayes literature (see, e.g. Hannan and

Robbins (1955) and Greenshtein and Ritov (2009)). We elaborate on this point in Section A.1.

4 lfdr and FDR

We begin this section by continuing the numerical experiment in the Gaussian graphical model

from Section 2.1. This example illustrates the bias of q-values as a measure of confidence

over a wide range of the sample space.

Recall the precision matrix Ω that defines our null hypotheses: Hij is true if there is zero

partial correlation between Xi and Xj , i.e. Ωij = 0. From the list of t-statistics (see section

2.1), we compute three summary statistics for each null hypothesis: a two-sided p-value, a

BH q-value, and an lfdr estimate using the ‘fdrtool’ package (Strimmer, 2008). These were

binned into a grid of [0, 1] with bin size 2.5%, and in each of the forty bins we calculate the

proportion of true nulls.

Figure 3 displays the results of the experiment. We see that the q-value systematically

under-estimates the chance that the null hypothesis is true, just less extremely than the

p-value does. We may reject a null hypothesis Hij at level q = 25%, when our actual

confidence in the null hypothesis should be around 50%. By contrast, the estimated lfdr is

well-calibrated: among t-statistics for which the estimated lfdr is close to 25%, close to a

quarter correspond to true null hypotheses. The calibration is even better for small values of

estimated lfdr.

Local false discovery rates are also naturally derived from FDR quantities in the multiple
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Figure 3: GGM example. Off-diagonal entries of Ω are either zero or O
(
n−1/2

)
, where d = 80

and n = 10d. There are m =
(
d
2

)
= 3, 160 tests, 95% of which are true nulls. We repeat the

experiment 104 times to assess calibration.

testing literature. The FDP and marginal FDR (mFDR) of a subset A ⊆ Z are defined:

FDP(A) =
V (A)

1 ∨R(A)
, mFDR(A) =

EV (A)

ER(A)

where

V (A) := #{i : Hi is true, zi ∈ A}
R(A) := #{i : zi ∈ A}.

Similarly, the subset version of the positive FDR (pFDR) is defined

pFDR(A) = E (FDP(A) | zi ∈ A for some i) .

Usually, FDR quantities are viewed as properties of a multiple testing procedure’s entire

rejection set. The above definitions generalize them to arbitrary subsets of the sample space.

Our next result states that the frequentist lfdr function is equal to the limiting marginal or

positive FDR within an interval shrinking to a point, provided that the joint density of the

observations isn’t supported on a zero-measure subset.

Theorem 4.1. Suppose z1, . . . , zm are jointly absolutely continuous. Then, for any t

lim
ε→0

mFDR([t− ε, t+ ε]) = lim
ε→0

pFDR([t− ε, t+ ε]) = lfdr(t).

The second equality in Theorem 4.1 suggests the following interpretation of the formula

for the lfdr: it is roughly equal to the proportion of null hypotheses whose test statistics fell
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near t. Other conceptions of the lfdr such as (3) and (21) require us to envision independent

replications of the entire multiple testing experiment, conditioning on those in which a selected

test-statistic is realized near a point. The interpretation in terms of the pFDR demands less

from our imagination, making reference to a single collection of hypotheses and their test

statistics.

Proposition 4.1. Suppose zi ∼ f (i) are independent, where f (i) = f0 when Hi = 0 and

εm → 0 is a sequence with m0εm → ∞, and that lfdr : R → [0, 1] is differentiable. Let

α ∈ range(lfdr). If |lfdr′(t)| is bounded away from zero on {t : lfdr(t) = α}, then

FDP
(
{zi : |lfdr(zi)− α| ≤ εm}

) P−→ α

as m → ∞.

Proposition 4.1 is related to a general calibration theorem in Dawid (1982), who studied

forecasting for a binary outcome Ym ∈ {0, 1} based on observations (Y1, . . . , Ym−1). In our

setting, the truth status of the null hypotheses are never revealed, and the sharpest way2

to forecast whether Hi is true depends on the observed p-values and the frequentist lfdr

function. However, as Figure 3 demonstrates, estimates of the lfdr can also be approximately

calibrated. In the next section, we turn our attention to estimating the lfdr.

5 Estimating the lfdr

Section 1 expressed the frequentist lfdr as the intensity ratio π̄0f0(t)/f̄(z). Assuming f0 is

known, we may conservatively bound π̄0 ≤ 1 or estimate it via e.g. Storey’s method, reducing

the problem of estimating lfdr to one of estimating the average density f̄ .

Closely related is the classical problem of estimating a density f , given i.i.d. observa-

tions z1, . . . , zm ∼ f . Many parametric and nonparametric methods have been proposed to

estimate f . Consider the maximum likelihood estimator

f̂m := argmax
f∈F

1

m

m∑
i=1

log f(zi), (7)

where F is a set of candidate density functions.

If f is a monotone (non-increasing) function on [0, 1], which is a common assumption in

multiple testing given a sequence of p-values (Genovese and Wasserman (2004), Strimmer

(2008)), the method of Grenander (1956) can be used to estimate f using (7) with F equal

to the set of non-increasing probability densities on [0, 1]. For Gaussian test-statistics, Kiefer

and Wolfowitz (1956) chose F to be the set of Gaussian mixture densities:

F =

{∫
ϕ(z − µ)G(dµ) : G is a probability measure

}
.

2among forecasters whose forecast about Hi depends only on zi
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Both of these estimators are nonparametric in the sense that the set F of candidate density

functions is infinite-dimensional.

A parametric approach was proposed by Lindsey (1974), where F is a finite-dimensional

exponential family,

f(z) = exp


J∑

j=0

βjz
j

 .

The resulting maximum likelihood estimate for f is quite smooth for moderately sized J , e.g.

J = 7 is the default setting in the ‘locfdr’ package of Efron et al. (2011) which implements

Lindsey’s method as a sub-routine when estimating the lfdr.

When the observations are not i.i.d., there is no single element of F for which the objective

in (7) matches the log-likelihood of the data. Nevertheless, the M -estimator f̂m can still be

computed from the sequence z1, . . . , zm. In the case of Gaussian observations, i.e. f (i) =

N(θi, 1), Zhang (2009) argues that it is sensible to estimate the average marginal density f̄

using (7), taking F to be the set of Gaussian location mixture densities. We now restate his

intuitive argument in the current setting.

For any candidate function f ∈ F , the expectation of the objective in (7) is:

E

[
1

m

m∑
i=1

log f(zi)

]
=

∫
1

m

m∑
i=1

f (i)(z) log f(z)dz

= Ef̄ log f(Z),

where Z is a draw from the average density f̄ . Let f∗
m denote the maximizer for the deter-

ministic analog of (7)

f∗
m := argmax

f∈F
Ef̄ log f(Z) (8)

= argmin
f∈F

D(f̄ ∥ f),

whereD(g∥h) is the KL distance between two probability distributions with densities g and h.

Under sufficient regularity conditions, the maximizer f̂m will concentrate around f∗
m. In

fact, f̂m will still be a consistent estimate of f∗
m even if the observations are mildly dependent.

As long as the objective in (7) converges uniformly to the population-level objective in (8),

we will have D(f∗
m∥f̂m)

p→ 0 (Van der Vaart, 2000, Theorem 5.7). We record this observation

in the following proposition.

Proposition 5.1. Suppose M∗
m(f) := Ef̄ log f(Z) and M̂m(f) := 1

m

∑m
i=1 log f(zi) satisfy

sup
f∈F

|M∗
m(f)− M̂m(f)| p→ 0,

as m → ∞ and suppose that f̄ ∈ F . Then D(f̄∥f̂m)
p→ 0.
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Figure 4: Shown above is the histogram of one-sided p-values falling below 0.025, adjusted for

selection by multiplying by 40 (the reciprocal of the 2.5% one-sided significance threshold).

The BH(q) threshold for q = 10% is around 0.27 (or ≈ 0.007 on the scale of the unadjusted

p-values), below which there are 202 rejections. The estimated FDP near the edge of the

rejection set (red) is around 32%.

In situations where f̄ ̸∈ F , the M -estimator f̂m doesn’t target the average density f̄ ,

but instead targets the element of F that minimizes the KL distance to f̄ . To ensure that

f∗
m = f̄ , it is sufficient that each density f (i) belongs to some base class of densities F0, and

then we take F = conv(F0). For example if we knew that each observation was normally

distributed with variance 1, then the mixture density f̄ is guaranteed to be in the set of

Gaussian location mixtures.

In the next section, we illustrate methods for estimating the local false discovery rate on a

meta-dataset collected by Mertens et al. (2022a) from the literature on ‘nudges’ in behavioral

psychology.

5.1 Example: Analysis of nudge-data

The concept of nudging is described by Thaler and Sunstein (2009) as a way of influencing

people’s behavior in a predictable way without restricting their options or altering economic

incentives. To evaluate the overall effectiveness of psychological nudging on human behavior,

Mertens et al. (2022a) collected data from 447 nudge experiments in the behavioral psychology

literature. The formulation of this question and the authors’ conclusion was the subject of

some debate (see e.g. Maier et al. (2022), Mertens et al. (2022b), Szaszi et al. (2022)).

To understand the degree to which false discoveries are present in the aggregated dataset,

we estimate the false discovery rate (FDR) using the Storey estimator (Storey, 2002) for

the proportion of true nulls, restricting attention to just the m = 261 many p-values falling

below the 5% two-sided significance level. This restriction is a way to work around the

publication bias present in scientific journals; although ineffective nudges may be under-

13
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Figure 5: Nudge example. The order statistics of the selection-adjusted p-values are plotted

against their rank. The estimated FDP among the smallest 202 p-values is close to 10%.

Within the first half, the estimate is 0.6%, whereas in the second half it is 22%.

represented among published studies, the null hypotheses whose p-values fall within the

significance region are less prone to censorship (Hung and Fithian (2020), Jaljuli et al. (2022)).

The Storey estimator of the null proportion within the significance region is around 28%,

suggesting that roughly a quarter of the m = 261 results reported below the 2.5% one-sided

significance level are false discoveries. To mitigate the high rate of false claims, we ran the

Storey-adjusted BH procedure (Storey et al., 2004) targeting a 10% FDR, yielding a more

stringent rejection threshold, as shown in Figure 4, below which there are only 202 p-values.

Upon inspecting the histogram left of the BH threshold, we find that the the estimated

rate of false discoveries varies substantially. As Figure 4 shows, the estimated proportion

of false discoveries (FDP) grossly exceeds 10% for a subset of rejections near the rejection

threshold. The method used to estimate the FDP is illustrated more explicitly in Figure 5.

The nudge example suggests that the BH rejection set is overly liberal in its last few

rejections, which are of low quality compared to the rest. Instead of controlling the rate of

false discoveries on average throughout the entire rejection set, we should focus on the FDR

among p-values falling at or just below the rejection threshold. By controlling the quality

of the least promising rejections, we ensure that each rejection is of sufficiently high quality.

In the next section, we propose a new (frequentist) error criterion that puts this idea into

practice.

6 Controlling the lfdr

To evaluate multiple testing procedures, it is natural to ask whether all the rejections are

individually defensible, not just whether the list of all rejections is defensible as a whole.

In a Bayesian model, this question can naturally be formulated in terms of the maximum

14



a posteriori null probability over all the rejections. Soloff et al. (2024) define the max-lfdr

for a multiple testing procedure as the expectation of this maximum, thereby evaluating a

procedure R = {i : reject Hi = 0} according to its least promising rejection,

max-lfdr(R) = E
[
max
i∈R

P(Hi = 0 | pi)
]
.

In a frequentist analysis under the fixed effects model, however, it is less obvious how to

formalize what we mean by the “least promising rejection.” In particular, because the null

probability for each hypothesis is either one or zero, the maximum is always one whenever

we make any false rejections at all.

Instead, we consider the truth status of the null hypothesis associated with the largest

p-value within the rejection region. For a procedure R whose rejection region [0, τ̂ ] contains

the R smallest p-values, the boundary false discovery rate (bFDR) is defined as the probability

that the last rejection is a false discovery,

bFDR(R) := P(H(R) = 0), (9)

where H(0) := 1 indicates the event where no rejections are made, and the notation H(k) ∈
{0, 1} means the hypothesis corresponding to the kth smallest p-value.

Definition (9) is at first glance puzzling; if the hypotheses H1, . . . ,Hm ∈ {0, 1} are fixed

to begin with, then how can we speak of the probability that one of them is null? The

reason is that we are not asking about a fixed and preconceived hypothesis, but a random

one depending on the data.

6.1 Comparison with FDR

The usual FDR measures the null probability of a uniformly selected rejection:

FDR(R) = P(H(I) = 0), I ∼ Uniform{1, . . . , R}.

Figure 6 illustrates a numerical example in which the non-null p-values are highly concen-

trated near zero, leading to a substantial difference between the average-case rejection (FDR),

and the ones near the boundary (bFDR).

Under a monotonicity assumption, the boundary rejection has the greatest null probability

of any rejection, which implies the boundary FDR is larger than the FDR. While one might

therefore be tempted to conclude that bFDR control is an inherently more conservative goal

than FDR control, in practice this may or may not be the case, because one would use a

larger threshold when controlling the bFDR than when controlling the FDR. For example,

an analyst who equates λ = 4 type II errors with a single type I error would want to control

bFDR at level 1/(1+λ) = 0.2. The same analyst would not be satisfied with a method whose

FDR is 0.2, since the cost of the false discoveries would on average exactly cancel out the

benefits of the true discoveries.
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Figure 6: The order statistics of m = 500 p-values are plotted against their rank. They are

generated with π̄0 = 0.5 where null p-values (red) are i.i.d. Uniform(0, 1) and alternative

p-values (blue) are i.i.d. Beta(0.05, 1). The bFDR is approximated by the fraction of nulls

among the largest 15 p-values below 0.1.

To illustrate this point, consider the weighted classification risk, which can be redefined

(up to additive and multiplicative constants) as

Lλ(H, δ) := λV − (R− V ),

where V is the number of false positives among the R discoveries. Taking λ = 4, a procedure

targeting a false discovery rate V/R = 1/(1 + λ) = 0.2 achieves the same loss as a trivial

procedure that simply sets V = R = 0.

Instead, such an analyst would always aim to control FDR at some level smaller than

0.2, for example 0.1 so that they achieve some net benefit from the experiment. As a result,

no sensible analyst would ever be interested in bFDR control and FDR control at the same

level. Since bFDR control and FDR control typically wouldn’t be carried out at the same

level, it is unclear which is more conservative in any given case.

6.2 Controlling the boundary FDR

Soloff et al. (2024) proposed the Support Line (SL) method for controlling the max-lfdr under

a monotonicity constraint. The procedure run at level α rejects the Rα smallest p-values,

where

Rα := argmax
k=0,...,m

{
αk

m
− p(k)

}
, p(0) := 0. (10)

The SL method controls its boundary FDR when the nulls are independent.
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Theorem 6.1. If p1, . . . , pm are independent and Hi = 0 implies pi ∼ Uniform(0, 1), then

bFDR(Rα) = π̄0α,

where Rα := {i : pi ≤ p(Rα)} is defined by (10).

Proof of Theorem 6.1. The event {H(Rα) = 0} can be written as a disjoint union,

{H(Rα) = 0} =
⋃

i:Hi=0

{p(Rα) = pi}

which implies

P(H(Rα) = 0) =
∑

i:Hi=0

P(p(Rα) = pi) = m0 ·
α

m
.

The last equality follows from Lemma 2 of Soloff et al. (2024), which states that for any

configuration of the other p-values p1, . . . , pm−1, the probability that a null p-value pm achieves

the optimum in (10) is equal to α
m

3.

The proof of Theorem 6.1 shows the boundary FDR control of the SL procedure is con-

trolled when each null density is bounded,

Hi = 0 ⇒ f (i)(t) ≤ 1 for all t ∈ [0, α]. (11)

This condition is distinct from requiring the nulls be super-uniformly distributed, which is

an assumption commonly made in the multiple testing literature and is not sufficient to

guarantee boundary FDR control. An example in which super-uniformly distributed p-values

arise is one-sided Gaussian location testing,

Xi ∼ N(θi, 1), i = 1, . . . ,m

where Hi = 0 ⇒ θi ≤ 0. In this case, the probability density function for pi = 1 − Φ(Xi)

satisfies (11) under the null, for any α ≤ 1/2. This observation extends to one-parameter

exponential families with continuous densities.

Proposition 6.1. Let (gθ)θ∈R denote an exponential family of continuous distributions on

R with densities

gθ(z) = exp(θz −A(θ))gθ0(z), θ, z ∈ R,

with corresponding cdfs (Gθ). For one-sided testing of the hypotheses Hi : θi ≤ θ0, let

α∗ = 1−Gθ0(Eθ0Z) be the upper quantile of the mean under θ0. Then the null density of the

one-sided p-value p = 1−Gθ0(Z) is bounded by 1 on [0, α∗], for all θ ≤ θ0.

3An alternative proof of the fact “Hi = 0 ⇒ P(p(Rα) = pi) = α
m
” can be found in the appendix, the

technical key for which is a telescoping sum argument.
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7 Discussion

“Considering the enormous gains potentially available from empirical Bayes meth-

ods, the effects on statistical practice have been somewhat underwhelming.” (Efron,

2019)

One barrier to the wider adoption of empirical Bayes is its philosophical status. Fre-

quentists have legitimate concerns about the Bayesian side of empirical Bayes. This paper

introduces a frequentist counterpart to the local false discovery rate: it is firmly rooted in

decision theory and enjoys some of the key properties of a Bayesian posterior. Standard

empirical Bayes methods estimate this quantity in the frequentist setting.

We close our discussion with some interesting avenues for future work.

• Frequentist posteriors. The Bayesian local false discovery rate is simply the posterior

of a binary latent variable, Hi, and our frequentist definition corresponds to the oracle

Bayes posterior of Efron (2019). It may be of interest to estimate the full oracle Bayes

posterior beyond binary settings. In the Gaussian sequence model, compound decision

theory has mostly focused on estimating the mean of the posterior (Zhang, 2009; Jiang

and Zhang, 2009).

• Estimation in the frequentist model. While we give one asymptotic result on

estimating the lfdr (Proposition 5.1), finite-sample estimation error is a serious con-

cern. When the statistics are independent but not identically distributed, the empirical

distribution is in a strong sense less dispersed than its i.i.d. counterpart (see, e.g.,

Shorack and Wellner, 2009, Chapter 25). Does this observation allow us to translate

empirical Bayes guarantees into compound decision theory guarantees (Hannan and

Robbins, 1955; Han and Niles-Weed, 2024)? How robust are empirical Bayes estimates

of marginal lfdr to violations of independence?
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Figure 7: For each of 6 realizations of the vector (p1, . . . , pm), with m = 1000, π̄0 = 0.8,

f0 = 1[0,1] and f1 = Beta(1/4, 1), clfdr(p) is approximated numerically and the points

(lfdr(pi), clfdri(p)) are plotted with the diagonal y = x shown as a dashed line. Each color

represents a different realization of the one-thousand p-values.

A Appendix

A.1 Compound lfdr

In this section, we refer to formula (2) as the marginal lfdr since it scores the ith null

hypothesis as a function of only its p-value pi. In practice, we would need to estimate the

quantities π̄0, f̄0, f̄ appearing in (2), so our decision to reject or accept the ith null hypothesis

eventually depends on all of p1, . . . , pm. In the absence of further contextual information, it

is natural to require the decision rule to be symmetric with respect to the order in which the

p-values are observed. This symmetry elicits another oracle function, called the compound

lfdr, which plays a role parallel to that of the lfdr in characterizing the best permutation

equivariant decision rule.

We say that a decision rule δ(p) := (δ1(p), . . . , δm(p)) is is permutation equivariant (PE)

if

δ(p)π = δ(pπ) for any π ∈ Sm, (12)

where Sm is the set of permutations on [m], and vπ := (vπ(1), . . . , vπ(m)) denotes the vector

v ∈ Rm permuted by π. Any multiple testing procedure that uses a rejection threshold which

is a function of the order statistics is PE. For example, the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995) applied to a list of p-values defines a PE decision rule.

Random shuffling induces an exchangeable Bayesian model:

π ∼ Uniform(Sm)

H̃ := Hπ, p̃ := pπ.
(13)
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The weighted classification risk of any PE decision rule δ in this model coincides with its fre-

quentist compound risk, yielding another instance of the fundamental theorem for compound

decisions (Zhang (2003), Robbins (1951), Weinstein (2021))

ELλ(H, δ(p)) = ẼLλ(H̃, δ(p̃)),

where Ẽ marginalizes over H̃ and p̃ generated by (13). The right hand side is minimized by

the Bayes rule within the exchangeable oracle model (13), characterized by the compound

lfdr (clfdr),

clfdri(t1, . . . , tm) := P(H̃i = 0 | p̃ = t)

=

∑
π∈Sm:Hπ(i)=0

∏m
j=1 f

(π(j))(tj)∑
π∈Sm

∏m
j=1 f

(π(j))(tj)
, (14)

for i = 1, . . . ,m and t := (t1, . . . , tm) ∈ [0, 1]m. It follows that the best PE decision rule is

δ∗i (p) :=

{
1 if clfdri(p) ≤ 1

1+λ

0 else.
(15)

This claim follows from a more general relationship between the best PE decision rule and

the Bayes rule with respect to a Haar measure prior (see Eaton and George (2021) for a para-

phrasing of this result). We also include an elementary proof in appendix B for completeness.

The marginal lfdr is recovered in the exchangeable model (13) by conditioning on one

p-value,

lfdr(t) = P(H̃i = 0 | p̃i = t), t ∈ [0, 1].

Given the true p-value densities f (1), . . . , f (m), the clfdr can typically only be computed in

small problems (e.g. m ≤ 20), but can be approximated numerically in larger problems

(e.g. m ≈ 1000) using a method developed by McCullagh (2014) for approximating a matrix

permanent. Whereas the lfdr is a fixed function on [0, 1], clfdr depends on the particular

realization of p-values, as illustrated in Figure 8. The clfdr and lfdr scores are plotted for six

realizations of p-values in Figure 7, where they can be seen to roughly coincide for large m.

In the next section, we discuss the marginal and compound lfdr functions from a Bayesian

perspective. Bayesians with an exchangeable prior implicitly report their estimate of the

clfdr via their posterior null probability given all the observations. In light of the previous

discussion, this implies that the marginal lfdr is close to the “right” answer in any Bayesian

model where the prior is exchangeable and the observations are independent given the truth

status of each null hypothesis.

A.2 Bayesian interpretation of clfdr and mlfdr

In a Bayesian model, clfdri(p) is the conditional probability that the ith null hypothesis is

true, given the data and the empirical distribution of the underlying parameters. For context,
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Figure 8: Three realizations of the order statistics of m = 6 many p-values are plotted against

their scores clfdri(p) for i = 1, . . . , 6. In this simulation, m0 = 4, f0 = Uniform(0, 1), and

f1 = Beta(1/4, 1). The clfdr scores are computed using the realized values p(1) ≤ · · · ≤ p(6)
and formula (14). The dependence between clfdr scores in any given realization requires that

they always sum to m0.

suppose there is an exchangeable sequence of latent variables θ1, . . . , θm taking values in some

parameter space Θ, and conditional on θ = (θ1, . . . , θm), the data is drawn according to

pi | θ ∼ fθi , independently for i = 1, . . . ,m. (16)

A standard example is the normal location model, where fθi(Φ̄
−1(pi)) = ϕ(Φ̄−1(pi)−θi) and ϕ

is the standard normal density. The more general setting is recovered by taking the parameter

to be θi = (Hi, f
(i)) and the parameter space to be Θ = {0, 1} × {all densities on [0, 1]}.

For a given realization of θ, the marginal and compound lfdr in a Bayesian model with

an exchangeable prior on θ are:

lfdr(t;Gm) = P(θi = 0 | pi = t, Gm), (17)

clfdri(t;Gm) = P(θi = 0 | p = t, Gm) (18)

where t ∈ [0, 1], t ∈ [0, 1]m,

Gm(t) := m−1
m∑
i=1

1{θi ≤ t}

is the empirical cumulative distribution function of the true effects, and {θi = 0} is the null

event5. This definition appears ambiguous, because up until this point, the marginal and

compound lfdr have only been defined in a strictly frequentist model. To clarify, conditioned

on a specific realization of θ, the joint distribution (16) defines a frequentist model, and within

5previously denoted Hi = 0
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this model the frequentist lfdr and clfdr functions are equivalent to posterior probabilities

that condition also on Gm within the ambient Bayesian model.

Proposition A.1. Suppose θ1, . . . , θm is an exchangeable sequence of latent variables, and

that given θ = (θ1, . . . , θm), the p-values are drawn according to (16). Let lfdr(t;Gm) and

clfdri(t;Gm) be defined as in (17) and (18) where t := (t1, . . . , tm) ∈ [0, 1]m. Then

lfdr(t;Gm) =
π̄0f0(t)

1
m

∑m
i=1 fθi(t)

clfdri(t;Gm) =

∑
π∈Sm:θπ(i)=0

∏m
j=1 fθπ(j)

(tj)∑
π∈Sm

∏m
j=1 fθπ(j)

(tj)
,

for i = 1, . . . ,m, where π̄0 :=
#{i:θi=0}

m .

For the compound lfdr, there is a large class of Bayesians (essentially, ones with exchangeable

priors over (θi)
m
i=1) for whom their posterior credence in each null hypothesis coincides with

their Bayes estimate of compound lfdr. In this sense, we might say Bayesians with exchange-

able priors are all in agreement that the compound lfdr is the right quantity to estimate. The

same can nearly be said about the marginal lfdr, for the smaller subclass of Bayesians who

look marginally at the data for each hypothesis. For these Bayesians, the posterior proba-

bility given a single pi coincides with their conditional expectation of the lfdr. These claims

are formalized in the next proposition, which is a straightforward consequence of the tower

property of conditional expectations.

Proposition A.2. Suppose the sequence {(θi, pi)}mi=1 is exchangeable and (16) holds for each

i = 1, . . . ,m. Then

P(θi = 0 | p) = E [clfdri(p; θ) | p] . (19)

Marginally, we have for each i = 1, . . . ,m

P(θi = 0 | pi) = E [lfdr(pi; θ) | pi] . (20)

If we can obtain a good estimator of the compound lfdr given structural assumptions like

monotonicity, then any Bayesian with an exchangeable prior on the hypotheses should be

fairly satisfied with using it to make predictions, since the predictions they would make are

just their estimate of the same quantity. In particular, in many large problems, most of these

Bayesian observers would converge on similar estimates for compound lfdr. In such cases, a

good frequentist estimator of compound lfdr should also give about the same answer.

The marginal lfdr is computationally simpler to evaluate than the compound lfdr, and

under sufficiently regular conditions, their ratio tends to 1 as m → ∞.

Lemma A.1. Suppose pi ∼ f (i) are drawn independently for i = 1, . . . ,m where each f (i) is

a continuous density. f (i) = f0 when Hi = 0 and f (i) = f1 when Hi = 1. If m0
m → π0 ∈ (0, 1)
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as m → ∞, and Var
(
f1
f0
(p1)

)
∨ Var

(
f0
f1
(p2)

)
< ∞ when p1 ∼ f0 and p2 ∼ f1, then we have

for each i = 1, 2, . . .

P
(∣∣∣∣clfdri(p)lfdr(pi)

− 1

∣∣∣∣ > m−1/2(logm)3/2
)

≤ C

(logm)3

for some constant C > 0 when m is sufficiently large.

B Proofs of technical results

Proof of Theorem 3.1. Given that some zJ = t, the index J is a random variable satisfying

P(J = j | zJ = t) ∝ f (j)(t).

By the continuous density assumption, J is almost surely unique. Therefore,

P(J ∈ H0 | zJ = t) =

∑
j∈H0

f (j)(t)∑m
j=1 f

(j)(t)
=

π̄0f0(t)

f̄(t)
.

Proof of Theorem 3.2. The continuous density assumption implies

P
( ⋃
j∈H0

{|ℓj − α| ≤ ε}
)
∼
∑
j∈H0

∫
{t:|lfdr(t)−α|≤ε}

f0(t)dt

P
( m⋃
j=1

{|ℓj − α| ≤ ε}
)
∼ m

∫
{t:|lfdr(t)−α|≤ε}

f̄(t)dt,

as ε → 0. Now since π̄0f0(t) ∼ αf̄(t) for any t such that |lfdr(t)− α| ≤ ε, the ratio tends to

α.

Since g is calibrated,

g(t) = E [1−HI | g(zI) = g(t)]

= E [lfdr(zI) | g(zI) = g(t)] ,

by the tower property, where I ∼ Uniform{1, . . . ,m}.

Proof of Theorem 3.3. The expected weighted classification loss can be re-expressed

ELλ(H, δ) = EzI∼f̄ ℓλ(HI , g(zI)),

where I ∼ Uniform{1, . . . ,m} and ℓλ(h, y) is the per-instance loss:

ℓλ(h, y) = λ 1{h is true, y = reject}
+1{h is false, y = accept}.

Since zI ∼ f̄ = π̄0f0 + (1 − π̄0)f̄1 follows a Bayesian two-groups model, the expected loss is

minimized by the Bayes rule (Sun and Cai, 2007), which is characterized by the local fdr in

this two-groups model,

lfdr(t) = P(HI = 0 | zI = t). (21)
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Proof of Theorem 4.1. Let V ≡ V (z − ε, z + ε) and R ≡ R(z − ε, z + ε). First, mFDR([t−
ε, t+ ε]) is equal to

=
E [
∑m

i=1(1−Hi)1{zi ∈ [t− ε, t+ ε])}]
E [
∑m

i=1 1{zi ∈ [t− ε, t+ ε]}]

=

∑m
i=1(1−Hi)P(zi ∈ [t− ε, t+ ε])∑m

i=1 P(zi ∈ [t− ε, t+ ε])

∼
∑

i:Hi=0 f
(i)(t)ε∑m

i=1 f
(i)(t)ε

= lfdr(t).

The third line holds because each density f (i) is continuous, so the probability that zi ∈
[t− ε, t+ ε] is proportional to the density evaluated at some point in this interval, multiplied

by the length of the interval.

Next, the pFDR is

E(V/R | R > 0) =
E(V/R · 1{R > 0})

P(R > 0)
.

Since P(R = 1 | R > 0) → 1 as ε → 0, we have

E(V/R · 1{R > 0}) ∼ P (∪j∈H0{|Zj − z| < ε}) .

Since P(R > 0) = P
(
∪j∈[m]{|Zj − z| < ε}

)
, the ratio is

= lim
ε→0

P (∪j∈H0{|Zj − z| < ε})
P
(
∪j∈[m]{|Zj − z| < ε}

)
= lim

ε→0

∑
j∈H0

P{|Zj − z| < ε}+O(ε2)∑
j∈[m] P{|Zj − z| < ε}+O(ε2)

= lfdr(z).

Proof of Proposition 4.1. Let Sm := {t ∈ [0, 1] : |lfdr(t) − α| ≤ εm}, and define the count

variables

N0 := #{i ∈ H0 : pi ∈ Sm}, N1 := #{i ∈ H1 : pi ∈ Sm}.

To show that N0
1∨(N0+N1)

− α → 0 in probability, it is enough to show

N0

EN0
− 1

P−→ 0, and
N0 +N1

E(N0 +N1)
− 1

P−→ 0, (22)

as m → ∞, since the ratio of expectations E(N0)
E(N0+N1)

→ lfdr(lfdr−1(α)) = α. By Chebyshev’s

inequality, we have for any fixed δ > 0,

P
(∣∣∣∣ N0

EN0
− 1

∣∣∣∣ > δ

)
≤ Var(N0)

(EN0)2δ2
≍ m0εm

(m0εm)2
, (23)
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because Hi = 0 implies P(lfdr(zi) ∈ α ± εm) ≍ εm as m → ∞, since for each α in the range

of lfdr, the absolute derivative |lfdr′(t)| is bounded away from zero on {t : lfdr(t) = α}. The
right hand side of (23) tends to zero since m0εm → ∞. Similarly,

P
(∣∣∣∣ N0 +N1

E(N0 +N1)
− 1

∣∣∣∣ > δ

)
≤ Var(N0 +N1)

(E(N0 +N1))2δ2

≍ mεm
(mεm)2

≤ 1

m0εm
→ 0,

from which (22) follows.

Proof of Proposition 5.1. By Theorem 5.7 in Van der Vaart (2000), it suffices to check that

f∗
m is well-separated, i.e. for every ε > 0,

sup
f∈F :D(f∗

m∥f)≥ε
M∗

m(f) < M∗
m(f∗

m).

For any f ∈ F with D(f∗
m∥f) ≥ ε, we have

M∗
m(f∗

m) = Ef̄ log f̄(Z)

= D(f̄∥f)−D(f̄∥f) + Ef̄ log f̄(Z)

≥ ε+M∗
m(f),

since D(f̄∥f) = D(f∗
m∥f) ≥ ε.

Alternative proof of Theorem 6.1. Suppose without loss of generality that Hm = 0. Then

since the nulls are exchangeable, the bFDR of the SL method is

P(H(Rα) = 0) = mπ̄0P(p(Rα) = pm).

Let q(1) ≤ · · · ≤ q(m−1) denote the order statistics of p1, . . . , pm−1, and note that pm achieves

the maximum in (10) as the (k + 1)th order statistic if q(k) < pm < q(k+1) and

α(k + 1)

m
− pm

>

[
max

j=k+1,...,m−1

{
∆j +

α

m

}]
∨
[

max
j=0,...,k

∆j

]
,

for k ≤ m− 1, where q(0) := 0 and ∆j :=
αj
m − q(j). Rearranging the above inequalities gives

the range in which pm achieves the maximum and is equal to the (k + 1)th order statistic,

i.e. q(k) < pm and

pm <
αk

m
−
[

max
j=k+1,...,m−1

∆j

]
∨
[

max
j=0,...,k

∆j −
α

m

]
.

This range is non-empty when ∆k exceeds each of ∆k+1, . . . ,∆m−1 as well as maxj=0,...,m−1∆j−
α
m , and has length

∆k −
[

max
j=k+1,...,m−1

∆j

]
∨
[

max
j=0,...,k

∆j −
α

m

]
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Figure 9: Each length of the interval range in which pm achieves the maximum in (10) is

indicated by a vertical green bar, and the sum of these lengths is α
m .

The sum of lengths of the non-empty ranges is telescoping and equal to α
m , as illustrated in

Figure 9.

Proof of Proposition 6.1. When Z ∼ gθ, the density of p = 1−Gθ0(Z) is

d

dt
Pθ(p ≤ t) =

gθ
gθ0

(G−1
θ0

(1− t)).

At θ = θ0, the above ratio is equal to 1. When θ ≤ θ0, the log density has a positive derivative

in θ when

d

dθ

[
log

gθ
gθ0

(G−1
θ0

(1− t))

]
= G−1

θ0
(1− t)− Eθ(Z) > 0

which holds for all t ≤ α if G−1
θ0

(1− α) > Eθ0(Z).

Proposition B.1. In the setting of section A.1, the best PE decision rule for minimizing

the weighted classification risk is defined by (14) and (15).

Proof. For any PE decision rule δ,

ẼLλ(H̃, δ(p̃)) =
1

m!

∑
σ∈Sm

ELλ(Hσ, δ(pσ))

=
1

m!

∑
σ∈Sm

ELλ(Hσ, δ(p)σ)

= ELλ(H, δ(p)).

The Bayes rule

δ∗ = argmin
δ

Ẽ
[
Lλ(H̃, δ(p̃)) | p̃

]
,
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is itself PE due to exchangeability of (H̃i, p̃i) across i = 1, . . . ,m. To see this, note that for

any σ ∈ Sm, we have

(H̃, p̃)
(d)
= (H̃σ, p̃σ),

which implies the posterior probability mass function of H̃ | p̃ = t at h̃ ∈ {0, 1}m is equal to

the posterior pmf of H̃σ | p̃σ = tσ at h̃σ. Thus,

δ∗(t) = argmin
h∈{0,1}m

Ẽ
[
Lλ(H̃σ, h) | p̃σ = t

]
= argmin

h∈{0,1}m
Ẽ
[
Lλ(H̃, hσ−1) | p̃σ = t

]
=

[
argmin
g∈{0,1}m

Ẽ
[
Lλ(H̃, g) | p̃ = tσ−1

]]
σ

= δ∗(tσ−1)σ.

Since the above holds for any permutation σ, the Bayes rule in model (13) is a PE decision

rule. Since the average risk in the Bayes model (13) is equal to the risk function in the

frequentist model for every configuration of truth values H ∈ {0, 1}m, the Bayes rule is equal

to the best PE rule

δ∗ = argmin
δ PE

ELλ(H, δ(p)).

Proof of Proposition A.1. According to Bayes rule, P(θi = 0 | pi = t, Gm) is equal to

=
P(θi = 0 | Gm)f0(t)∑m

k=1 fθ(k)(t)P(rank(θi) = k | Gm)
,

where rank(θi) = k when θj < θi exactly k − 1 indices j ∈ [m], and θ(1) ≤ · · · ≤ θ(m) are the

ordered values of θ1, . . . , θm. Since θ1, . . . , θm are exchangeable, the above is equal to

P(θi = 0 | pi = t, Gm) =
Gm({0})f0(t)
1
m

∑m
j=1 fθj (t)

.

For (18), note that when pi = p(k), exchangeability implies

P(θi = 0 | p1 = t1, . . . , pm = tm, Gm)

∝
∑

π∈Sm:θπ(i)=0

m∏
j=1

fθπ(j)
(tj).

Proof of Lemma A.1. The argument is adapted from Theorem 3.1 in Greenshtein and Ritov

(2009). Supposing without loss of generality that H1 = 0 and H2 = 1,

clfdri(p) =
π̄0f0(pi)

π̄0f0(pi) + π̄1f1(pi) ·Xi
,
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where Xi is a likelihood ratio,

Xi :=

∑
σ∈Sm:σ(i)=2

∏m
j∈[m]\{i} f

(σ(j))(pj)∑
σ∈Sm:σ(i)=1

∏m
j∈[m]\{i} f

(σ(j))(pj)

for testing between the following two hypotheses:

Hyp0 : Observe a random permutation of p−i when Hi = 1

Hyp1 : Observe a random permutation of p−i when Hi = 0,

where the permutations are drawn uniformly at random from Sm−1. A simpler testing prob-

lem is:

H̃yp0 : p̃1, . . . , p̃m0

iid∼ f0, and (p̃m0+1, . . . , p̃m−1)
iid∼ f1

H̃yp1 :
1

m0

m0∑
ℓ=1

[
(p̃1:m0)−ℓ

iid∼ f0, (p̃ℓ, p̃m0+1, . . . , p̃m−1)
iid∼ f1

]
,

since Hyp0,Hyp1 can be obtained from H̃yp0, H̃yp0 by adding a random permutation. If

Hi = 0 (resp. Hi = 1), then the distribution of Xi is as if the data were generated by Hyp1
(resp. Hyp0). The likelihood ratio of H̃yp1 to H̃yp0 has variance

Var0

(
1

m0

m0∑
ℓ=1

f1
f0

(p̃ℓ)

)
=

1

m0
Var0

(
f1
f0

(p1)

)
→ 0

by assumption, where Var0 denotes the variance operation when H̃yp0 holds. It follows from

Lemma 2.1 in Greenshtein and Ritov (2009) that

EHi=1(Xi − 1)2 ≤ Ẽ0

(
1

m0

m0∑
ℓ=1

f1
f0

(p̃ℓ)− 1

)2

→ 0.

A symmetric argument yields

EHi=0(Xi − 1)2 ≤ Ẽ1

 1

m1

m−1∑
ℓ=m0

f0
f1

(p̃ℓ)− 1

2

→ 0,

under the condition that Var
(
f0
f1
(p2)

)
< ∞ when H2 = 1. Here we are abusing notation by

writing the index ℓ from m0 to m − 1, to denote summing over the m1 − 1 many p-values

drawn from f1 in the scenario described by H̃yp1. It now follows from Chebyshev’s inequality

that

P
(∣∣∣∣clfdri(p)lfdr(pi)

− 1

∣∣∣∣ > m−1/2(logm)3/2
)

≤ P
(
|Xi − 1| > m−1/2(logm)3/2

)
≤ m

(logm)3
·
Var

(
f0
f1
(p2)

)
∨Var

(
f1
f0
(p1)

)
m0 ∧m1

≤ C

(logm)3
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for some constant C > 0 as m → ∞, since π̄0 is bounded away from zero and one.
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