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Abstract

In this paper, we investigate the problem of testing conditional independence
(CI) between two random variables X and Y given Z, under the assumption that X
is stochastically increasing in Z. The hardness of testing the CI hypothesis is well
documented in the literature. While existing approaches often rely on parametric models,
smoothness assumptions, or approximations to the conditional distribution of X given
Z and/or Y given Z, our test requires no such knowledge beyond a shape constraint.
Inspired by the standard permutation method for unconditional independence testing,
our procedure determines the significance of a statistic by randomly swapping the X
values within ordered pairs of Z samples. The matched pairs and the test statistic
may depend on both Y and Z, providing the analyst with significant flexibility in
constructing a powerful test. Our test not only achieves finite-sample Type I error
control, but also has non-trivial asymptotic power against alternatives that are not
too close to the null models. We validate our theoretical findings through a series of
simulations and real data experiments.

1 Introduction

Consider the problem of testing the conditional independence (CI) hypothesis

HCI
0 : X ⊥⊥ Y | Z,

where X and Y are variables of interest (such as a treatment X and an outcome Y ),
while Z represents a (potentially high-dimensional) confounder. Our available data consist

of a sample (X1, Y1, Z1), . . . , (Xn, Yn, Zn)
iid∼ P , where P is an unknown distribution on

(X, Y, Z) ∈ X × Y × Z. Throughout, we write PX|Z and PY |Z to denote the conditional
distributions of X given Z and Y given Z respectively.

In the case where the distribution of Z is continuous, Shah and Peters (2020) established
that, without further assumptions, there is no universally valid test of HCI

0 that achieves
non-trivial power for any alternative distribution P ̸∈ HCI

0 ; see also Neykov, Balakrishnan
and Wasserman (2021) and Kim et al. (2022). Existing approaches to testing conditional
independence have therefore sought to guarantee validity (Type I error control) over restricted
classes of null distributions that impose one of the following additional structures:
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(a) a parametric model, such as joint Gaussianity of (X, Y, Z), or a Gaussian linear model
for Y | (X,Z) (Kalisch and Bühlmann, 2007);

(b) a known or well-estimated conditional distribution PX|Z (Candès et al., 2018; Barber,
Candès and Samworth, 2020; Berrett et al., 2020; Niu et al., 2024); or

(c) smoothness of the conditional distribution PX|Z (Shah and Peters, 2020; Lundborg,
Shah and Peters, 2022; Kim et al., 2022; Lundborg et al., 2024+).

1.1 Our contributions

In this work, we introduce a nonparametric structure under which we can test conditional
independence: we assume a shape constraint—specifically, a form of stochastic monotonicity—
for the conditional distribution ofX | Z. Such a constraint is motivated by several applications,
particularly in biomedicine, where for instance incidence of diabetes becomes more prevalent
with age (Yan et al., 2023), and left ventricular wall thickness is a known risk factor
for hypertrophic cardiomyopathy (O’Mahony et al., 2014). We observe a similar trend
in economics, where greater professional experience is often linked to higher salaries. In
agriculture, crop yields typically increase with optimal rainfall levels. Drawing insights from
these real-world examples, we consider the following constraint:

Assumption 1 (Monotonicity of the conditional distribution PX|Z). Let X ⊆ R and let ⪯
be a partial order on Z. We assume X is stochastically increasing in Z, meaning that

if z ⪯ z′ then PP {X ≥ x | Z = z} ≤ PP {X ≥ x | Z = z′} for all x.

This assumption does not fall into any of the categories (a)–(c) above. We will often consider
the case where the control variable Z is univariate, Z ⊆ R, under the usual total order ≤.
Our framework also allows for multivariate Z ∈ Rd, in which case the most common partial
order is the coordinatewise order.

Our main contribution is to introduce a broad strategy for testing the isotonic conditional
independence (ICI) null hypothesis

H ICI
0 : X ⊥⊥ Y | Z, and PX|Z satisfies Assumption 1. (1)

Naturally, this test should only be applied in settings where the monotonicity condition of
Assumption 1 is well-motivated, so that a rejection of H ICI

0 can reasonably be interpreted as
evidence that X ̸⊥⊥ Y | Z. However, we emphasize again that some additional assumption
beyond HCI

0 is essential for any valid test to have non-trivial power at any alternative.

1.2 Background: testing independence

To set the stage for some of the notation and ideas underlying our methodology, we briefly
review the simpler framework of permutation testing of the null hypothesis of marginal
independence, X ⊥⊥ Y .

Given a joint distribution P on X × Y, let (Xi, Yi)i∈[n]
iid∼ P , and write X = (Xi)

n
i=1 and

Y = (Yi)
n
i=1. We can reframe the problem of testing marginal independence as testing
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whether the entries of X are i.i.d. given Y. Specifically, permutation tests look for violations
of exchangeability of X given Y. The general approach proceeds as follows: based on Y, the
analyst chooses any statistic T : X n → R, with larger values of T (X) indicating evidence
against the independence null.1 Write Sn for the set of permutations of [n], and for σ ∈ Sn,
let Tσ = T (Xσ) denote the value of the statistic when the entries of X are permuted according
to σ—that is, Xσ = (Xσ(1), . . . , Xσ(n)). Finally, define a p-value

p =
1

n!

∑
σ∈Sn

1 {Tσ ≥ T} .

This construction produces a valid p-value for any choice of test statistic T , and the statistic T
can be tailored to have power against certain specific alternatives. Indeed, this strategy has
been successfully employed to construct independence tests via nearest neighbour distances and
mutual information (Berrett and Samworth, 2019), moment methods (Kim, Balakrishnan and
Wasserman, 2022), kernels (Pfister et al., 2018), the Hilbert–Schmidt independence criterion
(Albert et al., 2022) and U -statistics (Berrett and Samworth, 2021; Berrett, Kontoyiannis
and Samworth, 2021),

In our work, since we are interested in conditional (rather than marginal) independence, we will
follow a similar strategy, but will use a restricted class of functions T and a (data-dependent)
subgroup of permutations σ ∈ Sn, both of which respect the stochastic monotonicity Assump-
tion 1. Our framework still affords the analyst a great deal of flexibility in designing their
test, while controlling Type I error across the more challenging null class H ICI

0 .

2 Methodology

In this section we give a general procedure, called the PairSwap-ICI test, for testing the
isotonic conditional independence null H ICI

0 . Intuitively, it is plausible that we should be able
to construct powerful tests against some alternatives. For example, if Zi ⪯ Zj , then the shape
constraint ensures that Xi ≤ Xj should hold at least half of the time; if we instead observe
Xi ≫ Xj , then this may be due to the influence of Y . Our test builds on and formalizes this
intuition: after observing Y and Z, the analyst specifies pairs (i, j) such that Zi ⪯ Zj and
then may use large differences Xi −Xj as evidence against the null.

More formally, based on Y and Z, and without access to X, the analyst chooses:

(i) A sequence of ordered pairs
(i1, j1), . . . , (iL, jL)

of indices in [n] = {1, . . . , n}, where all 2L entries are distinct. We require the pairs to
be ordered in the sense that

Ziℓ ⪯ Zjℓ (2)

for each ℓ ∈ [L] = {1, . . . , L}. We refer to such a choice of ordered pairs (with any
L ≤ ⌊n/2⌋) as amatching, and denote the set of all possible matchings in [n] satisfying (2)
as Mn(Z).

1We emphasize that T (X) is allowed to depend on both X and Y—for instance we may define the function as
T (x) = |

∑n
i=1 xiYi|, though we suppress the dependence on Y in our notation.
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(ii) A sequence of functions ψ1, . . . , ψL, where each ψℓ : X × X → R satisfies the anti-
monotonicity property

ψℓ(x+∆, x′ −∆′)− ψℓ(x
′ −∆′, x+∆) ≥ ψℓ(x, x

′)− ψℓ(x
′, x), (3)

for all ∆,∆′ ≥ 0. An example of a class of functions ψ that satisfy anti-monotonicity is
ψ(x, x′) = f(x− x′) for any anti-symmetric and monotone nondecreasing function f ,
such as f(x) = x or f(x) = sign(x).

With these choices in place, our test statistic T : X n → R is defined as2

T (x) =
L∑

ℓ=1

ψℓ(xiℓ , xjℓ). (4)

In order to calibrate the test, the analyst compares the observed test statistic T = T (X)
with versions of T where indices within pairs (iℓ, jℓ) are randomly swapped. Specifically, for
s ∈ {±1}L, define Ts = T (Xs), where Xs is a swapped version of the data vector X, with
entries {

(Xs
iℓ
, Xs

jℓ
) = (Xiℓ , Xjℓ) sℓ = +1,

(Xs
iℓ
, Xs

jℓ
) = (Xjℓ , Xiℓ) sℓ = −1.

That is, sℓ = −1 indicates that the random variables Xiℓ and Xjℓ are swapped, while sℓ = +1
indicates no swap. Informally, the two constraints (2) and (3) ensure that, under the null,
each ψℓ(Xiℓ , Xjℓ) is likely to be no larger than its swapped version, ψℓ(Xjℓ , Xiℓ)—and thus,
the statistic T = T (X) is likely to be no larger than its swapped copies, Ts = T (Xs). If
instead T > Ts for many swaps s, this indicates evidence against the null. To formalize this
intuition, we define p-value for PairSwap-ICI test as

p :=
1

2L

∑
s∈{±1}L

1 {Ts ≥ T} . (5)

In words, we are comparing the observed value T of the statistic, against all possible permuted
statistic values Ts that we would obtain by swapping indices within matched pairs of our
observed data X.

Our method is quite flexible, in that the analyst may select any pairs (iℓ, jℓ) subject to
monotonicity (2), and any functions ψℓ satisfying (3), to construct a valid test. In particular,
they can decide on these aspects of the test after exploring the data Y,Z, choosing to include
a pair (iℓ, jℓ) if the data observed in Y indicates that Xiℓ > Xjℓ would be likely under the
alternative. However, the quality of the matches (iℓ, jℓ) and functions ψℓ affects the power of
our test; we discuss effective strategies for designing a statistic T in Section 3.

Example: a linear test statistic. Before proceeding, we give a simple example of a test
statistic that we might choose to use: consider a linear test statistic,

T (x) =
n∑

i=1

βixi

2Again, as for marginal permutation tests in Section 1.2, here we suppress dependence on Y and Z in the
notation T (x), even though this statistic does depend on Y and Z through the choices of the matched pairs
(iℓ, jℓ) and functions ψℓ.
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for some coefficients βi ∈ R. This function can be used as the test statistic for the
PairSwap-ICI test, as long as the coefficients satisfy

βiℓ ≥ βjℓ for each ℓ ∈ [L]. (6)

To see why, first note that without loss of generality we can take βi = 0 for all i ∈
[n] \ {i1, j1, . . . , iL, jL}, i.e., all data points not belonging to any of the L pairs. This is
because the indicator 1 {Ts ≥ T}, appearing in the computation of the p-value, is invariant
to these terms. Next, define

ψℓ(x, x
′) = βiℓx+ βjℓx

′,

which satisfies (3) because for any ∆,∆′ ≥ 0 with x, x′, x+∆, x′ −∆′ ∈ X , we have

ψℓ(x+∆, x′ −∆′)− ψℓ(x
′ −∆′, x+∆)− ψℓ(x, x

′) + ψℓ(x
′, x) = (βiℓ − βjℓ)(∆ +∆′) ≥ 0

by our assumption that βiℓ ≥ βjℓ . We then have T (x) equal to the test statistic defined
in (4).

We remark that choosing such a test statistic is by no means implying an assumption that the
dependence between X and Y follows a linear model —it may be the case that the statistic
T (x) = β⊤x has good power for distinguishing the null from the alternative even if a linear
model is only a coarse approximation to the true model.

2.1 Validity

Our first main result is that our method yields a valid test of H ICI
0 .

Theorem 1. Under H ICI
0 , the conditional Type I error of the PairSwap-ICI test satisfies

P {p ≤ α | Y,Z} ≤ α for all α ∈ [0, 1]. In particular, the test enjoys marginal error control:
P {p ≤ α} ≤ α for all α.

Our proof of Theorem 1 formalizes our intuition at the start of this section, making use
of the fact that, under the null, ψℓ(Xiℓ , Xjℓ) tends to be smaller than its swapped version
ψℓ(Xjℓ , Xiℓ).

Proof of Theorem 1. Our proof is split into three steps. First we derive some deterministic
properties of the p-value p. Next, we compare to the sharp null, where the pair Xiℓ , Xjℓ are
identically distributed (rather than stochastically ordered). Finally, we examine the validity
of the test under the sharp null.

Step 1: some deterministic properties of the p-value. First, fix α ∈ [0, 1] and define
a function p : Rn → [0, 1] as

p(x) =
1

2L

∑
s∈{±1}L

1 {T (xs) ≥ T (x)} , (7)

so that the p-value p in (5) can be written as p = p(X). For each s ∈ {±1}L, we can observe
that the value p(xs) is simply computing the quantile of T (xs) among all possible swapped
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statistics,
(
T (xs′) : s′ ∈ {±1}L

)
. Consequently, it holds deterministically that

1

2L

∑
s∈{±1}L

1 {p(xs) ≤ α} ≤ α. (8)

(Lemma D.24 in the Appendix verifies this bound, for completeness.)

In addition, we claim that p(·) is monotone in its coordinates, namely, p(x) is nonincreasing
in each xiℓ , and nondecreasing in each xjℓ . To see why, for each s ∈ {±1}L, we can calculate

1 {T (xs) ≥ T (x)} = 1

{ ∑
ℓ:sℓ=+1

ψℓ(xiℓ , xjℓ) +
∑

ℓ:sℓ=−1

ψℓ(xjℓ , xiℓ) ≥
L∑

ℓ=1

ψℓ(xiℓ , xjℓ)

}

= 1

{ ∑
ℓ:sℓ=−1

(
ψℓ(xiℓ , xjℓ)− ψℓ(xjℓ , xiℓ)

)
≤ 0

}
.

By the anti-monotonicity condition (3) on ψℓ, this function is nonincreasing in each xiℓ , and
nondecreasing in each xjℓ , and therefore the same is true for p(x) as well.

Step 2: compare to the sharp null. For each i ∈ [n], let Pi = PX|Z(· | Zi) denote
the null distribution of Xi (after conditioning on Y,Z). By Assumption 1, we know that
Piℓ ⪯st Pjℓ for each pair ℓ ∈ [L], where ⪯st denotes the stochastic ordering on distributions.
Next, we also define distributions P̄ℓ for each ℓ ∈ [L], given by the mixture

P̄ℓ =
1

2
Piℓ +

1

2
Pjℓ .

In particular, then,
Piℓ ⪯st P̄ℓ ⪯st Pjℓ , ℓ ∈ [L]. (9)

We will now compare the observed data values, whose distribution (conditional on Y,Z) is
given by

X = (X1, . . . , Xn) ∼ P1 × · · · × Pn,

against a different distribution,

X♯ =
(
(X♯)1, . . . , (X♯)n

)
∼ (P♯)1 × · · · × (P♯)n,

where the distributions (P♯)i are defined by setting

(P♯)iℓ = (P♯)jℓ = P̄ℓ

for each ℓ ∈ [L] (and, for any index i ∈ [n] \ {i1, j1, . . . , iL, jL} that does not belong to any of
the L matched pairs, we simply take (P♯)i = Pi). We can think of this alternative vector of
observations as being drawn from a sharp null, because for each pair ℓ, the random variables
(X♯)iℓ , (X♯)jℓ are identically distributed (rather than stochastically ordered, as for Xiℓ , Xjℓ).
In particular, this implies that for any s ∈ {±1}L,

(X♯)
s d
= X♯ (10)
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after conditioning on Y,Z.

In Step 1, we verified that the function p(x) is nonincreasing in each xiℓ , and nondecreasing
in each xjℓ . In particular, combined with the stochastic ordering (9), this means that
p(X♯) ⪯st p(X) (conditional on Y,Z). We therefore have

P {p ≤ α | Y,Z} = P {p(X) ≤ α | Y,Z} ≤ P {p(X♯) ≤ α | Y,Z} .

From this point on, then, we only need to verify the validity of the p-value p(X♯) computed
under the sharp null.

Step 3: validity under the sharp null. For data X♯ drawn under a sharp null, we have

P {p(X♯) ≤ α | Y,Z} =
1

2L

∑
s∈{±1}L

P
{
p
(
(X♯)

s
)
≤ α

∣∣ Y,Z}

= E

 1

2L

∑
s∈{±1}L

1
{
p
(
(X♯)

s
)
≤ α

} ∣∣∣∣∣∣ Y,Z
 ≤ α,

where the first step holds by (10), while the last step holds by the deterministic calculation (8)
from Step 1.

The p-value constructed in (5) requires computing Ts = T (Xs) for all 2L values of s ∈ {−1, 1}L,
which may be computationally prohibitive for moderate or large L. In practice, it is common

to use a Monte Carlo approximation to the p-value: we sample s(1), . . . , s(M) iid∼ Unif({±1}L),
and then compute

p̂M =
1 +

∑M
m=1 1 {Ts(m) ≥ T}

1 +M

The extra ‘1+’ term appearing in the numerator and denominator is necessary to ensure error
control for this Monte Carlo version of our test (Davison and Hinkley, 1997; Phipson and
Smyth, 2010); in particular, this correction ensures we cannot have p̂M = 0. The following
theorem verifies that this version of the test also controls the Type I error.

Theorem 2. Fix any M ∈ N. Under H ICI
0 , it holds that P {p̂M ≤ α | Y,Z} ≤ α for

all α ∈ [0, 1], and consequently, P {p̂M ≤ α} ≤ α.

3 Designing a powerful PairSwap-ICI test

In this section, we construct a principled, powerful implementation of our test, by designing
concrete choices for the pairs (iℓ, jℓ) and the functions ψℓ introduced in Section 2. Throughout,
we will restrict our attention to test statistics T (x) of the form

T (x) =
L∑

ℓ=1

wℓ ψ(xiℓ , xjℓ). (11)
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That is, in the original definition of the test statistic (4), we take ψℓ(·) = wℓψ(·) for some
sequence of non-negative weights w = (wℓ)

L
ℓ=1 and some fixed kernel ψ, which is required to

satisfy the anti-monotonicity condition (3).

With this simplification, designing a test statistic now requires specifying the kernel ψ,
deciding which pairs (iℓ, jℓ) are matched, and finally, how much weight wℓ to assign to each
pair, as depicted in this flowchart:

Kernel ψ Matching M = {(iℓ, jℓ)}Lℓ=1 Weights w = (wℓ)
L
ℓ=1

As guaranteed by Theorem 1, our test controls the Type I error for any choice of ψ,M and w,
subject to the conditions (2) and (3) outlined at the start of Section 2. However, for the test
to be effective, we need to tailor these choices to the specific application of interest. Of course,
all of these choices interact with each other: what constitutes a good matching depends on
how we choose the weights, and vice versa.

3.1 Specifying the kernel ψ

We begin by considering several simple options for the kernel ψ. As a first example, consider
ψ(x, x′) = x− x′. This choice of ψ means that ψ(Xiℓ , Xjℓ) is likely to be ≤ 0 under the null
(since Ziℓ ⪯ Zjℓ), but under the alternative, may be likely to be large (if the pair (iℓ, jℓ) is
chosen wisely). Of course, we also allow for nonlinear test statistics to handle a broader range
of settings. If X has heavy tails, then the distribution of a linear statistic T can be very
sensitive to extreme values. We can ameliorate this sensitivity by using ψ(x, x′) = sign(x−x′),
or ψ(x, x′) = (−K) ∨ (x− x′) ∧K (i.e., the truncation of x− x′ to some bounded interval
[−K,K]) for some constant K > 0.

Example: a linear test statistic, revisited. To give more motivation for these simple
choices, we will now see that a PairSwap-ICI test run with any linear test statistic Tlin(x) =∑n

i=1 βixi, can always be expressed in the form (11) with the linear kernel ψ(x, x′) = x− x′.
To see why, define

wℓ =
βiℓ − βjℓ

2
,

(and note that we must have wℓ ≥ 0 due to (6)). Then we can write

Tlin(x) = T (x) + Tsym(x),

where T is defined as in (11), and where the term

Tsym(x) =
L∑

ℓ=1

βiℓ + βjℓ
2

(xiℓ + xjℓ) +
∑

i∈[n]\{i1,j1,...,iL,jL}

βixi

is symmetric in the pair (xiℓ , xjℓ) for each ℓ. Thus Tsym(x
s) = Tsym(x) for any x and any

s ∈ {±1}L. It follows that

1 {(Tlin)s ≥ Tlin} = 1 {Ts ≥ T}
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for every s—that is, the p-value p defined in (5) is identical if we use the test statistic T of
the form (11) in place of the original linear test statistic Tlin.

3.2 Oracle strategies for choosing the matching and weights

We now build intuition for how to choose the matching M and weights w effectively by
sketching the asymptotics of our test, assuming some oracle knowledge (or estimates) of
the data distribution. Let us consider any statistic T of the form (11). Throughout this
section, the kernel ψ is a fixed function, and we wish to choose the weights w = (wℓ)ℓ∈[L] and
matching M = {(iℓ, jℓ)}ℓ∈[L] to maximize the power of our test. Given the data (X,Y,Z),
the reference statistic Ts is a sum of L independent random variables. Under some regularity
conditions on the weights w and the function ψ, a central limit theorem (CLT) approximation
gives, for large L, that

p ≈ Φ̄(T̂ ) where T̂ = T̂ (w,M) :=

∑L
ℓ=1wℓψ(Xiℓ , Xjℓ)√∑L
ℓ=1w

2
ℓψ(Xiℓ , Xjℓ)

2

,

and where Φ̄ denotes the standard Gaussian survival function, i.e., Φ̄(t) = 1− Φ(t), where
Φ is the standard Gaussian distribution function. The above approximation holds for
fixed X,Y,Z and relies only on the CLT approximation for a weighted sum of L independent
signs s1, . . . , sL ∈ {±1}.

The above calculation tells us that we should aim to choose weights that maximize the

approximate probability of rejection, P
{
Φ̄(T̂ ) ≤ α

∣∣∣ Y,Z}, in order to achieve the best

possible power. Under some conditions this conditional power can be further approximated
as

Φ

( ∑L
ℓ=1wℓE [ψ(Xiℓ , Xjℓ) | Y,Z]√∑L
ℓ=1w

2
ℓVar (ψ(Xiℓ , Xjℓ) | Y,Z)

− Φ̄−1(α)

)
(12)

(see Theorem C.12 in the Appendix for a closer look at this approximation). The following
lemma shows how to maximize this approximation over the weights, treating the matching
M as fixed.

Lemma 3. Assume that Var (ψℓ(Xiℓ , Xjℓ) | Y,Z) > 0 for ℓ ∈ [L]. Considered as a function
of w = (w1, . . . , wL) ∈ [0,∞)L, the function in (12) is maximised by the choice

w∗
ℓ =

max {E [ψ(Xiℓ , Xjℓ) | Y,Z] , 0}
Var (ψ(Xiℓ , Xjℓ) | Y,Z)

, (13)

for ℓ ∈ [L].

Using a plug-in estimate for the moments. In Lemma 3, the oracle weight vec-
tor w∗ depends on the conditional expected value and variance, E [ψ(Xiℓ , Xjℓ) | Y,Z] and
Var (ψ(Xiℓ , Xjℓ) | Y,Z). In practice, we will assume that we have access to estimates Êij of

E [ψ(Xiℓ , Xjℓ) | Y,Z] and V̂ij > 0 of Var (ψ(Xi, Xj) | Y,Z), for each i, j ∈ [n], constructed
from data that are independent of X. For example, these might be obtained from a fitted
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model for the conditional distribution of X given Y, Z constructed using a separate data
set (e.g. via sample splitting). For the linear kernel ψ(x, x′) = x− x′, this would amount to
estimating the first two moments of Xi | Yi, Zi for i ∈ [n], whereas if ψ(x, x′) = sign(x− x′),
then we would need to estimate P {Xi > Xj | Yi, Zi, Yj, Zj} for distinct indices i, j. With
these estimates in place, we can seek to maximize the power of our test by choosing weights

ŵℓ =
max{Êiℓjℓ , 0}

V̂iℓjℓ

for ℓ ∈ [L].

Choosing the matching. In the oracle setting, once we fix the choice of weights as in (13),
the estimator (12) of the test’s conditional power is maximized by solving a maximum-weight
matching problem, namely that of finding

M∗ ∈ argmax
M∈Mn(Z)

∑
(i,j)∈M

(
W ∗

ij

)2
where W ∗

ij =
max {E [ψ(Xi, Xj) | Y,Z] , 0}

Var (ψ(Xi, Xj) | Y,Z)
. (14)

We then run PairSwap-ICI with this oracle matching M∗, and with weights wℓ = W ∗
iℓjℓ

for
each pair (iℓ, jℓ) ∈M∗.

Similarly, using the plug-in estimates, the conditional power is approximately maximized by
finding

M̂ ∈ argmax
M∈Mn(Z)

∑
(i,j)∈M

Ŵ 2
ij where Ŵij =

max{Êij, 0}
V̂ij

. (15)

To run PairSwap-ICI, we then take weights wℓ = Ŵiℓjℓ for each pair (iℓ, jℓ) ∈ M̂ .

The plug-in matching M̂ can be computed in polynomial time (Edmonds, 1965; Duan and
Pettie, 2014). Specifically, if m = |{(i, j) : Zi ⪯ Zj}|, then M̂ can be computed in time
O(mn+ n2 log n) using an algorithm of Gabow (1985).3

3.3 Heuristic strategies for choosing the matching and weights

Above, in Section 3.2, the test statistic T (x) was designed with the aim of maximizing the
power of our test, but with the assumption that we have access to substantial knowledge
about the distribution of the data—for instance, we have been able to fit a model for the
distribution of (X, Y, Z) using a separate data set. Of course, an accurate estimate of the
true model can enable a very powerful test (since we have a good approximation of the
alternative that we are testing against), but in some settings the approach of Section 3.2
may not be practical, either because we are not able to reliably approximate the distribution
of the data, or because the required computations are too costly (in particular, the oracle
matching strategy).

3For our experiments in Sections 5 and 6, we use the Python package networkx (Hagberg, Swart and Schult,
2008), which uses the Blossom algorithm (Edmonds, 1965) and runs in time O(n3).
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In this section, therefore, we take a completely different approach: we will propose an
extremely simple scheme for designing weights w, and two easy strategies for choosing a
matching M , that do not require extensive prior knowledge or costly calculations. Of course,
this will come at some cost in terms of the resulting power of the test, since we are no longer
mimicking an oracle test—but, as we will see in both our theoretical guarantees and our
empirical results below, these simple strategies can often attain high power nonetheless.

Throughout this section, we will restrict our attention to the one-dimensional setting, Z ⊆ R,
and will also choose the kernel ψ(x, x′) = x−x′ when defining our test statistic as in (11). We
will work in the setting where we hypothesize that, under the alternative, there is a positive
association between X and Y even after controlling for Z (of course, if our hypothesis is a
negative association, we can follow an analogous strategy). The idea is simple: we will take
pairs (iℓ, jℓ) such that

• Ziℓ ≤ Zjℓ (as required for validity), but Ziℓ ≈ Zjℓ ; and

• Yiℓ > Yjℓ (so that, under the alternative, we expect Xiℓ > Xjℓ).

3.3.1 A simple weighting scheme

We begin by defining a mechanism for choosing the weights: we will take

wℓ =
(
Yiℓ − Yjℓ

)
+
,

the difference in Y values (if this difference is positive for the pair (iℓ, jℓ)).

Why is this simple strategy a reasonable choice across broad settings? Our test statistic T (X)
is given by

T (X) =
∑

ℓ:Yiℓ
>Yjℓ

(Yiℓ − Yjℓ) · (Xiℓ −Xjℓ).

Since under the alternative, we expect Xiℓ > Xjℓ , this means that the expected value of T (X)
is large and positive under the alternative (but, of course, is non-positive under the null).

To consider another motivation, let us examine a specific model. Suppose that Y has a linear
effect on the mean of X, so that

E [X | Y = y, Z = z] = β∗y + µ∗
Z(z),

and the conditional variance is constant,

Var (X | Y = y, Z = z) = σ∗2.

Then, following the oracle strategy of Section 3.2,as in (13) we have oracle weights

w∗
ℓ =

max {E [Xiℓ −Xjℓ | Y,Z] , 0}
Var (Xiℓ −Xjℓ | Y,Z)

=
max {β∗(Yiℓ − Yjℓ) + (µ∗

Z(Ziℓ)− µ∗
Z(Zjℓ)), 0}

2σ∗2

≈ β∗

2σ∗2 max
{
(Yiℓ − Yjℓ), 0

}
,

where the last step holds since we have assumed Ziℓ ≈ Zjℓ in our choice of the pair (and
so µ∗

Z(Ziℓ) ≈ µ∗
Z(Zjℓ) likely holds). But crucially, our test is invariant to rescaling the

weights—that is, choosing weights wℓ = max
{
Yiℓ − Yjℓ , 0

}
is equivalent to choosing weights

β∗

2σ∗2 max
{
(Yiℓ − Yjℓ), 0

}
, and thus is nearly equivalent to the oracle weights.

11



3.3.2 Two simple matching schemes

Next, we propose two matching strategies that, again, do not require any knowledge or
estimate of the model.

Neighbour matching. Our first simple matching strategy is to choose pairs that are
nearest neighbours in the list of sorted Z values.

Algorithm 1 neighbour matching

Preliminaries: sort Z values, i.e., find a permutation π of {1, . . . , n} such that

Zπ(1) ≤ Zπ(2) ≤ · · · ≤ Zπ(n−1) ≤ Zπ(n).

for m = 1, . . . , ⌊n/2⌋ do
If Yπ(2m−1) > Yπ(2m), then add a new pair to the matching,

(iℓ, jℓ) = (π(2m− 1), π(2m)).

end for

This strategy ensures that, for all pairs (iℓ, jℓ) = (π(2m− 1), π(2m)) that are included in the
matching, we have Ziℓ ≤ Zjℓ and Yiℓ > Yjℓ by construction, and moreover, it likely holds that
Ziℓ ≈ Zjℓ (since we have chosen two consecutive Z values in the sorted list).

However, an obvious limitation of this näıve matching strategy is that many consecutive pairs
(π(2m − 1), π(2m)) in the sorted list can fail to have Yπ(2m−1) > Yπ(2m) just by chance. In
particular, if the Z values in this pair are approximately equal (as we might expect), then the
values Yπ(2m−1), Yπ(2m) are expected to be approximately i.i.d.—which means that the event
Yπ(2m−1) > Yπ(2m) will fail half the time. In other words, we are discarding approximately half
of the data—we will expect to have L ≈ n/4 pairs in this matching (meaning that 2L ≈ n/2
many data points have been assigned to a matched pair).

Cross-bin matching. Our next strategy is cross-bin matching, which aims to avoid the
inefficiency of neighbour matching—we aim to use (nearly) all of the data, rather than
discarding half the data as is likely the case for neighbour matching. To implement this
strategy, we will partition the list of sorted Z values into K bins, and will allow a pair of
data points to be matched as long as the Z values are in adjacent bins (rather than requiring
consecutive Z values, as for neighbour matching).

12



Algorithm 2 Cross-bin matching

Preliminaries: sort Z values, i.e., find a permutation π of {1, . . . , n} such that

Zπ(1) ≤ Zπ(2) ≤ · · · ≤ Zπ(n−1) ≤ Zπ(n),

and define K bins of indices,

A1 = {π(1), . . . , π(m},
A2 = {π(m+ 1), . . . , π(2m)},
. . .

AK = {π((K − 1)m+ 1), . . . , π(Km)},

where m = ⌊n/K⌋.
for k = 1, . . . , K do
Define rk,1, . . . , rk,m as a permutation of Ak such that

Yrk,1 ≥ · · · ≥ Yrk,m .

end for
for k = 1, . . . , K − 1 do
for s = 1, . . . , ⌊m/2⌋ do
If Yrk,s > Yrk+1,m+1−s

, then add a new pair to the matching,

(iℓ, jℓ) = (rk,s, rk+1,m+1−s).

end for
end for

To explain this procedure in words:

• First we group the Z values into K many bins, with each bin Ak containing m many
consecutive Z values.

• Then, we attempt to match the largest values of Y in bin k with the smallest values of
Y in bin k + 1—that is, in the inner “for loop”, at step s = 1 we are attempting to
match the largest Y value in bin k (i.e., Yrk,1) with the smallest Y value in bin k + 1
(i.e., Yrk+1,m

), and then at step s = 2 we proceed to matching the second-largest and
second-smallest, and so on.

This scheme is illustrated in Figure 1.

13
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Figure 1: Demonstration of the cross-bin matching scheme described in Algorithm 2.

Why do we expect that this strategy will be more powerful than the simpler neighbour
matching strategy? At a high level, while neighbour matching is expected to discard around
half of the data, the cross-bin matching strategy can potentially assign nearly all data points
to a matched pair. However, there is a potential tradeoff: while the pairs produced by
both strategies will likely satisfy Ziℓ ≈ Zjℓ , this approximation will be closer to equality for
neighbour matching (where pairs consist of consecutive Z values) than cross-bin matching
(where pairs consist of Z values in neighbouring bins, i.e., they may be up to 2m positions
apart in the sorted list). If m is not too large (i.e., the number of bins K is not too small),
though, this difference is hopefully negligible. We will examine both methods theoretically in
the following section and will see these tradeoffs in more detail.

4 Power analysis

In this section, we study the power of PairSwap-ICI test under the following general model.

We assume that the data (X,Y,Z) = (Xi, Yi, Zi)i∈[n]
iid∼ P is drawn according to

X = µ(Y,Z) + ζ, (16)

where µ : Y × Z → R (applied componentwise) is a measurable function, and with

(Yi, Zi)i∈[n]
iid∼ PY,Z drawn independently from (ζi)i∈[n]

iid∼ Pζ . We suppose that Pζ has
mean 0 and unknown variance σ2 > 0. Throughout this section, we also assume that the
statistic T admits the form in (11) with ψ(x, x′) = x−x′, and we restrict our attention to the
setting Y = Z = R; the partial ordering ⪯ for Z will simply be the usual ordering ≤ on R.

14



Defining isotonic signal strength (ISS). Before stating the results on power under
this signal plus noise model, we first introduce some notation. We denote by CISO the set of
non-decreasing functions on R and then, we define

ISSn = inf
g∈CISO

EPn
Y,Z

[∥µ(Y,Z)− g(Z)∥2] , ÎSSn = inf
g∈CISO

∥µ(Y,Z)− g(Z)∥2, (17)

referring to them as the oracle and empirical isotonic signal strength respectively (here g(Z)

is applied componentwise). In particular, under the null, we would have ISSn = ÎSSn = 0
(since we can simply take g to be the true mean function, which does not depend on Y ),
while under the alternative these quantities might be large.

Preview of results. To analyze the performance of PairSwap-ICI testing procedure, we
study the power conditional on Y and Z, i.e. P {p ≤ α | Y,Z}, and we demonstrate how

this power is characterized by the isotonic signal strength quantities ISSn and ÎSSn. The
organization of this section is as follows.

• In Section 4.1 we study the asymptotic upper and lower bound on the power of oracle
matching (as defined in Section 3.2), conditional on Y and Z, and establish that the

empirical quantity ÎSSn governs their behaviour. The same guarantees also hold for the
plug-in matching strategy defined in Section 3.2, as long as the estimate µ̂ is consistent.
Qualitatively, this implies that we can have non-trivial power guarantees against the
alternatives with large isotonic signal strength.

• Next, in Section 4.2, we show that the converse also holds, i.e., one can not distinguish
the null class from the alternatives with small isotonic signal strength. More precisely,
if the oracle quantity ISSn is too small, then no valid testing procedure for H ICI

0 can
have non-trivial power.

• Finally, in Section 4.3, we specialize our power guarantees to the special case of
partially linear Gaussian models. We show that even without the knowledge of µ or an
approximation for the same, we can achieve near-optimal power guarantees with some
of the more practical matching algorithms from Section 3.3.

4.1 ISS dictates the power of oracle matching

Below, we study the best-case performance of PairSwap-ICI procedure, specifically the
asymptotic behaviour of the conditional power for oracle matching. In particular Theorem 4
provides asymptotic upper and lower bounds on the conditional power P {p ≤ α | Y,Z} of
oracle matching under the following framework: we assume that the distributions PY,Z and
Pζ in (16) are independent of the sample size n, while the regression function µ(·, ·) does
depend on n; however, we suppress the dependence of n in our notation for simplicity.

Theorem 4. Suppose that ÎSSn > 0 and that ∥µ(Y,Z)∥∞ ∨ ∥µ(Y,Z)∥4∞ = oP (ÎSSn). Then,
under the model (16), the conditional power of oracle matching with α ∈ (0, 1/2) satisfies

Φ

(
ÎSSn√
2σ

− Φ̄−1(α)

)
− oP (1) ≤ P {p ≤ α | Y,Z} ≤ Φ

(
ÎSSn

σ
− Φ̄−1(α)

)
+ oP (1). (18)
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We observe that ÎSSn/σ, which can be interpreted here as the signal-to-noise ratio, dictates
both the upper and lower bound. We also notice that the upper and lower bounds on
conditional power match up to a factor of 2—in fact, this factor is unavoidable without
imposing further model assumptions (e.g., symmetry of µ(Y, Z) conditional on Z, as we will
discuss in more detail in Appendix C.4.3).

Remark 1. While the asymptotic lower and upper bounds require that
(
∥µ(Y,Z)∥∞ ∨

∥µ(Y,Z)∥4∞
)
/ÎSSn = oP (1), we remark that this is a natural assumption on the quality of

matching. For example, if X is bounded, then ∥µ(Y,Z)∥∞ ∨ ∥µ(Y,Z)∥4∞ = O(1)—and so for

this assumption to hold, it is sufficient to require ÎSSn → ∞, i.e., the amount of signal in the
data increases with n.

Power guarantees for plug-in matching with an estimate of µ. Now, we shift our
attention to the more practical setting, where we do not have the oracle knowledge of µ.
A natural solution is data splitting—i.e., we learn an estimate µ̂ on one random split of
the data, and then implement PairSwap-ICI test with the plug-in matching M̂ . While
the aforementioned data splitting approach is more accurate and practical, for the sake of
simplicity, in order to state the following result, we assume that we have an independent data
where we can learn µ̂. Finally, under suitable consistency assumptions on µ̂, we can recover
the power guarantees in Theorem 4.

Theorem 5. Consider the setting and assumptions of Theorem 4. Suppose we use plug-in
matching M̂ with an estimate µ̂ constructed based on independent data, where µ̂ satisfies

∥µ̂(Y,Z)− µ(Y,Z)∥2 = oP (ÎSSn), ∥µ̂(Y,Z)− µ(Y,Z)∥4∞ = oP (ÎSSn).

Then the conditional power of the PairSwap-ICI satisfies (18) for α ∈ (0, 1/2).

4.2 ISS characterizes hardness of testing the null H ICI
0

While ÎSSn governs the asymptotic upper and lower bounds on power in 4 and 5, the
relationship between ISSn and power extends beyond the PairSwap-ICI test. Here, we
establish this connection formally. In particular, we will see that the quantity ISSn determines
which alternative models are distinguishable from the class of null models, via any valid
testing procedure. Towards this goal, we start with a simple total-variation calculation to
give an upper bound on the power function of any valid test.

Proposition 6. Fix α ∈ (0, 1). Fix any test ϕ that controls false positives at level α, i.e.,4

ϕ : (X × R× R)n → [0, 1] such that sup
P∈HICI

0

EP [ϕ(X,Y,Z)] ≤ α.

Then for any distribution PX,Y,Z,

EPX,Y,Z
[ϕ(X,Y,Z)] ≤ α + inf

QX,Y,Z∈HICI
0

dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
.

4Traditionally, we think of a hypothesis test ϕ as a map from data to a decision, i.e., ϕ(X,Y,Z) ∈ {0, 1}.
Why, then, do we define tests ϕ as mapping to the space [0, 1]? This is because, in some settings, we may
want to consider randomized tests—for instance, in the notation above where ϕ maps to [0, 1], an outcome
ϕ(X,Y,Z) = 0.75 represents that, given the data, our randomized test rejects the null with probability 0.75. Of
course, a nonrandomized test is simply a special case, obtained by restricting the output of ϕ to lie in {0, 1}.
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This last total variation term is the distance of PX,Y,Z from the null class H ICI
0 , meaning the

closer P is to null models, the harder it will be to get non-trivial power against P . While
in general it is hard to derive exact expressions for the total variation term, under some
additional model assumptions on P , we can come up with interpretable upper bounds for the
same. Two such examples are listed below.

• Gaussian setting: In the first example, we consider a special class of Gaussian
alternatives, which is given by (16) with Pζ = N (0, σ2) for some σ > 0. In this special
case, ISSn gives a meaningful upper bound on the offset total-variation term, up to a
constant.

Corollary 7. Suppose, Pζ = N (0, σ2) and (X,Y,Z) satisfy (16). Then

inf
QX,Y,Z∈HICI

0

dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
≤ ISSn

2σ
,

and consequently, for any test ϕ that controls Type I error at level α,

EP [ϕ(X,Y,Z)] ≤ α +
ISSn

2σ
.

• Binary setting: Now, suppose X,Y,Z are generated from the model PX,Y,Z given by

Xi ∼ Ber(µ(Yi, Zi)), (Y1, Z1), · · · , (Yn, Zn)
iid∼ PY,Z . (19)

Here as well, ISSn leads to a very interpretable upper bound on the power of our test,
as long as µ(Y, Z) is almost surely away from the extremities, i.e., 0 or 1.

Corollary 8. Suppose (X,Y,Z) satisfy (19) where µ(Y, Z) ∈ (ϵ, 1− ϵ) almost surely
for some ϵ > 0. Then

inf
QX,Y,Z∈HICI

0

dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
≤
(

1

ϵ(1− ϵ)

)1/2

ISSn,

and consequently, for any test ϕ that controls Type I error at level α,

EP [ϕ(X,Y,Z)] ≤ α +

(
1

ϵ(1− ϵ)

)1/2

ISSn.

To summarize, an appropriate signal-to-noise ratio determines the extent to which a test can
outperform the trivial test that rejects the null H ICI

0 with probability α without using data.
Consequently, in both examples, no valid test can achieve non-trivial power when ISSn is
negligible relative to the noise in PX|Y,Z .

Note that this characterization relies on the oracle quantity ISSn, while the conditional power
of the PairSwap-ICI test is determined by the empirical version, ÎSSn. We would expect

that, under mild conditions, ISSn ≈ ÎSSn (i.e., a concentration property should hold, as long
as n is large)—we can therefore interpret ISSn as characterizing the power, both in terms of
upper and lower bounds, at least for certain cases.
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4.3 Near-optimal power guarantees without knowledge of µ

The asymptotic upper and lower bounds on conditional power from Theorems 4 and 5 require
either oracle knowledge of µ or an independent estimate of µ whose Euclidean norm error
is small by comparison with ÎSSn. If this side information is not available, then a natural
question arises: can near-optimal power guarantees be achieved with some of the simpler and
more practical matching schemes from Section 3.3?

The aim of this subsection is to show that this is indeed possible, under some additional
assumptions on the model class (16). Specifically, consider the class of partially linear
Gaussian models given by

(X,Y,Z) satisfy (16) with Pζ = N (0, σ2), µ(Y,Z) = µ0(Z) + βnY (20)

for some µ0 ∈ CISO (applied componentwise) and some βn ∈ [0,∞). We also assume that
Y is a bounded and mean-zero random variable, with |Y | ≤ 1. Note that µ0 is a fixed
function, and so the dependence on n of the distribution of (X, Y, Z) is solely through βn.
The following lemma relates ISSn to a more interpretable quantity, namely the expected
conditional variance of Y given Z.

Lemma 9. Under the model class (20),

√
nβn ·

(
E [Var (Y | Z)]

)1/2 (
1 + oP (1)

)
≤ ISSn ≤

√
nβn.

We can draw several conclusions from this result. By Lemma 9 and Corollary 7, no valid
test can achieve asymptotically non-trivial power against an alternative in the model class
(20) when βn = o(1/

√
n). From this point on, then, we will consider the regime βn ≳ 1/

√
n.

Another consequence of Lemma 9 is that the asymptotic lower bound on the conditional
power of oracle matching in (18) further simplifies to give

P {p ≤ α | Y,Z} ≥ Φ

(
√
nβn

{
E [Var (Y | Z)]

2σ2

}1/2

− Φ̄−1(α)

)
− oP (1). (21)

Next, we aim to show that practical matching schemes, such as neighbour matching and
cross-bin matching, can achieve conditional power at least as good as the lower bound above.

Theorem 10. Let βn ≳ 1/
√
n, and assume that µ0(Z) is a sub-Gaussian random variable.

Then the conditional power of neighbour matching (Algorithm 1), implemented with kernel
ψ(x, x′) = x− x′ and weights wℓ = max

{
Yiℓ − Yjℓ , 0

}
, satisfies∣∣∣∣P {p ≤ α | Y,Z} − Φ

(√
nβn

{
E [Var (Y | Z)]

4σ2

}1/2

− Φ̄−1(α)

)∣∣∣∣ = oP (1).

Notably, the conditional power of neighbour matching matches the lower bound from (21) up
to a factor of 2. This factor arises due to the inherent inefficiency of neighbour matching:
as discussed in Section 3.3, we have seen that neighbour matching discards roughly half the
data, which explains the extra factor of 2.
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To avoid this loss of a factor of 2, we now consider the cross-bin matching strategy, which
will typically assign nearly all data points to a matched pair. Consequently, the power of
cross-bin matching can then meet the lower bound in (21).

Theorem 11. Consider the setting as in Theorem 10. Then, the conditional power of cross-bin
matching (Algorithm 2) with K ∝

√
n many bins, implemented with kernel ψ(x, x′) = x− x′,

weights wℓ = max
{
Yiℓ − Yjℓ , 0

}
, satisfies

P {p ≤ α | Y,Z} ≥ Φ

(
√
nβn

{
E [Var (Y | Z)]

2σ2

}1/2

− Φ̄−1(α)

)
− oP (1)

under suitable smoothness assumptions (stated formally in Theorem C.14).

In particular, this result matches the lower bound in (21), without an additional factor of
2 as for neighbour matching. (While the above result provides only an asymptotic lower
bound on the conditional power of cross-bin matching, under additional assumptions we can
characterize the power more exactly—see Appendix C.4.)

5 Simulations

In this section, we evaluate the performance of our method on simulated data, and compare
the matching strategies from Section 3.3. For simplicity, we focus on the univariate case
Z = R. We will test two versions of the PairSwap-ICI method:

• Neighbour matching (Algorithm 1), with the linear kernel ψ(x, x′) = x− x′ and weights
wℓ = max{Yiℓ − Yjℓ , 0} as discussed in Section 3.3;

• Cross-bin matching (Algorithm 2) with K = 2
⌊
n1/2

⌋
bins, again with the linear kernel

ψ(x, x′) = x − x′ and weights wℓ = max{Yiℓ − Yjℓ , 0}. This particular choice of K is
motivated by Theorem 11, which suggests choosing K ∝

√
n bins in order to achieve

competitive power with neighbour matching.

5.1 Conservativeness under the null H ICI
0

Theorem 1 establishes valid, finite-sample Type I error control for our method. The purpose of
this section is to evaluate how conservative the Type I error is under various null distributions.
Because our inference relies on the fact that matched pairs (Xiℓ , Xjℓ) are stochastically
ordered under the null, intuitively the conservativeness of our test depends on the strength of
monotonicity in the conditional distribution.

To see how the dependence between X and Z affects the rejection probability, we sample X
from an additive noise model

X | Y, Z ∼ N (µ(γZ), 1),

where Y, Z are independent standard normal random variables. As long as µ is nondecreasing
and γ ≥ 0, this joint distribution belongs to the null H ICI

0 . The scalar γ controls the strength
of the monotonicity of X | Z. In particular, as γ ↓ 0 we expect the Type I error P {p ≤ α} to
approach α.
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In our simulations, we consider two functions µ, the identity µ(z) = z and the Gaussian CDF
µ(z) = Φ(z). Figure 2 shows the Type I error as a function of γ for two levels of α. We
observe similar results for each α, where the test typically becomes more conservative as γ
increases, as expected. Under the null, our test is more conservative for cross-bin matching
than for neighbour matching, since the Z values are further apart in cross-bin matching.
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Figure 2: Simulation results illustrating Type I error control under the null H ICI
0 for two

forms of the conditional mean E [X | Z]. Each subplot shows the rejection probability of
PairSwap-ICI test on data set of size 1000, averaged over 104 simulation trials, as a function
of the strength of stochastic monotonicity γ.

5.2 Power under alternatives

In Section 4.3 we showed theoretically that our heuristic methods—neighbour matching and
cross-bin matching—achieve high power (in fact, power that tends to 1) in the partial linear
model (20) provided the signal βn exceeds the detection threshold n−1/2. In this section, we
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Figure 3: Simulation results demonstrating power for two alternatives at level α = 0.1. Each
subplot shows the rejection probability, averaged over 103 simulation trials, as a function
of the sample size n. Columns correspond to different relationships between Y and Z. In
each setting, X follows a Gaussian linear model with mean βnY + γZ, where βn = n−1/3 and
γ = 0.5 (above) or γ = 2 (below).

now examine this setting empirically. We sample data from the Gaussian linear model

X | Y, Z ∼ N (βnY + γZ, 1),

with βn = n−1/3. The pair (Y, Z) is drawn from a bivariate Gaussian

N
(
0,

[
1 ρY Z

ρY Z 1

])
.

Figure 3 shows the power as a function of the sample size n for various choices of γ and
ρY Z . In Setting 1, we set γ = 0.5, and cross-bin matching uniformly dominates neighbour
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matching because it allows us to make many more matches of similar quality. On the other
hand, in Setting 2 we set γ = 2, so the strong dependence of X on Z means the quality of a
match (iℓ, jℓ) degrades much more quickly as the gap Zjℓ −Ziℓ increases—that is, for cross-bin
matching, where Ziℓ and Zjℓ may be farther apart than for neighbour matching, this gap
may lead to conservativeness that results in a loss of power. However, with sufficiently large
sample size, cross-bin matching performs at least as well as the neighbour matching. This is
because the bin width decreases as n increases, so the quality of the cross-bin matches rivals
that of the neighbour matches (with many more matches). The dependence ρY Z between Y
and Z does not have a major impact on the power of these two methods.

6 Experiment on real data: risk factors for diabetes

In this section, we evaluate the performance of our proposed testing procedure on a real
data set in three different experimental setting. The PairSwap-ICI method is implemented
with the heuristic neighbour matching or with cross-bin matching (with K = 50 bins),
and our statistic T takes the form in (11) with linear kernel ψ(x, x′) = x− x′ and weights
wℓ = max{Yiℓ − Yjℓ , 0}.

We use a data set5 on the incidence of diabetes among the Pima population near Phoenix,
Arizona, originally collected by the US National Institute of Diabetes and Digestive and
Kidney Diseases. The data set contains 768 observations, and it includes information on
whether each of the patient has been diagnosed with diabetes according to World Health
Organization standards. Additional variables provide data on the number of pregnancies,
plasma glucose concentration, diastolic blood pressure, triceps skinfold thickness, 2-hour
serum insulin levels, body mass index (BMI), diabetes pedigree function and age.

It is well-known that the likelihood of developing diabetes increases with age (e.g., the CDC6

lists advanced age as one of the risk factors for type 1 and type 2 diabetes). Therefore, if
we choose X to represent the incidence of diabetes and Z as the age of the patient, then
we would expect X to exhibit stochastic monotonicity with respect to Z (i.e., we expect
that Assumption 1 holds, at least approximately). This is supported by the increasing trend
we observe in Figure 4. Most of the other variables, such as BloodPressure, BMI, Glucose,
and Pregnancies, are also considered potential risk factors for diabetes, as visualized in
Figure 5—but does this association remain after we control for age? In this experiment, we
aim to determine whether these variables remain significant risk factors for diabetes, even
after controlling for age.

Experiment 1: marginal independence testing: In our first experiment, we consider
six variables: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, and BMI,
and aim to assess whether each of them is an individual risk factor for diabetes incidence.
Specifically, we test the hypothesis H0 : X ⊥⊥ Y , where Y represents one of the six variables
listed above, while X is Diabetes (and since we are testing marginal rather than conditional
independence, we do not attempt to control for Z, i.e., Age). For this purpose, we will be

5The data for this experiment were obtained from https://www.kaggle.com/datasets/uciml/

pima-indians-diabetes-database. Additional data descriptions can be found in Smith et al. (1988).
6For more details, refer to the list of diabetes risk factors from U.S. Centers for Disease Control and Prevention.
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Figure 4: A scatter-plot (jittered for better visibility) of Age and Diabetes Incidence along
with the fitted logistic regression model to demonstrate the stochastic monotonicity between
them.

using the permutation test for independence with T (X,Y) = XTY, as outlined in Section
1.2.

Experiment 2: conditional independence testing, after controlling for age: Next,
for the same set of six choices for Y , we test the hypothesis HCI

0 : X ⊥⊥ Y | Z, where Z
denotes Age (and X is Diabetes as before). This allows us to identify risk factors for diabetes
after controlling for age. As noted earlier, we expect the distribution of X | Z = z to be
stochastically monotone in z, which supports the application of the PairSwap-ICI testing
procedure developed in this paper for this purpose.

Experiment 3: conditional independence testing, with synthetic control X̃: Finally,
we consider a semi-synthetic experiment where X is replaced by synthetic observations X̃,
generated from an estimated model for PX|Z that satisfies stochastic monotonicity. We then

test the hypothesis H̃0 : X̃ ⊥⊥ Y | Z for the same choices of Y from Experiment 1. Since X̃ is
generated solely based on Z, the null hypothesis of conditional independence holds trivially
in this synthetic setting. Tthe validity of our procedure should therefore ensure that the
p-values generated by PairSwap-ICI are (super)uniformly distributed.

Now we give details on how the synthetic feature X̃ is generated. Since X is binary, it suffices
to fit an isotonic regression to estimate the conditional mean E [X | Z] and then sample X̃
from the Bernoulli distribution with this fitted conditional mean. Following the theory of
Henzi, Ziegel and Gneiting (2021, Theorem 1), this is the best approximation for PX|Z under
continuous ranked probability score (CRPS), while respecting the monotonocity constraint.
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Figure 5: Scatter plots of X (jittered for better visibility) and other feature variables along
with the fitted logistic regression models to demonstrate the dependence among these variables
and Diabetes Incidence.

Pregnancies Glucose
Blood pres-
sure

Skin thick-
ness

Insulin BMI

Permutation test
(testing marginal indep.)

0.001(0.00) 0.001(0.00) 0.155(0.003) 0.117(0.002) 0.023(0.001) 0.001(0.00)

PairSwap-ICI
neighbour
matching

0.433(0.005) 0.002(0.00) 0.496(0.005) 0.243(0.004) 0.159(0.003) 0.033(0.001)

cross-bin
matching

0.424(0.004) 0.001(0.00) 0.499(0.004) 0.123(0.003) 0.224(0.004) 0.001(0.00)

PairSwap-ICI
(with synthetic
control)

neighbour
matching

0.511(0.005) 0.499(0.005) 0.501(0.005) 0.506(0.005) 0.497(0.005) 0.499(0.005)

cross-bin
matching

0.544(0.005) 0.550(0.005) 0.555(0.005) 0.558(0.005) 0.545(0.005) 0.555(0.005)

Table 1: p-values, averaged over 3000 random sub-samples along with the estimated standard
errors (within brackets) for the different tests from different experiments, as outlined in
Section 6. The p-values significant at the 0.05 level are marked in bold.

For each experiment, we generate 3,000 random sub-samples of the data, each consisting
of half the size of the full data set. We then compute p-values using the permutation test
for marginal independence and the PairSwap-ICI test for conditional independence. For
experiments involving synthetic control, which require estimating PX|Z , the sub-sampled data

is further divided into training and test sets, with P̂X|Z being computed in training set. For
all the experiments, p-values are computed in the test set. Finally, we report the average
p-values from the 3, 000 sub-samples, along with the corresponding choice of the Y variable
in Table 1.
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Results: Under the marginal independence test, four of the six variables are identified as
having significant association with Diabetes—but, once we test conditional independence
with the PairSwap-ICI test, only two of these associations are identified as significant.
Specifically, Glucose and BMI both are identified as potential risk factors at the 0.05 level
of significance by the marginal independence test, and also by the PairSwap-ICI test, even
after controlling for Age. On the other hand, the variables Pregnancies and Insulin are
significant only under the marginal test; this suggests that, after controlling for Age, the data
does not provide sufficient evidence to support them as risk factors for Diabetes.

Finally, we also note that all the averaged p-value from Experiment 3 with synthetic control
X̃ is concentrated around 0.5, for each of the choices of Y . Since (X̃, Y, Z) satisfy H ICI

0

the p-values from Experiment 3 should be roughly uniform (or, if the test is conservative,
superuniform), and thus this behaviour is expected as per the result we have established in
Theorem 1.

7 Discussion

In this paper, we have developed a nonparametric test of conditional independence assuming
only stochastic monotonicity of the conditional distribution PX|Z . This nonparametric
constraint is natural in many applications, and allows us to circumvent the impossibility
of assumption-free conditional independence testing (Shah and Peters, 2020). We have
introduced a variety of approaches to constructing a valid test statistic. Our test controls
the Type I error in finite samples and has power against an array of alternatives. We close
our discussion with some interesting connections to the literature, and potential avenues for
future work.

• Optimal power in general settings. Theorems 4 and 5 bound the asymptotic power of
our test above and below, where the upper and lower bounds differ by the appearance
of the constant 2 in the lower bound—as we will see in Appendix C.4.3, this difference
can be removed if we assume that the conditional distribution of Y | Z is symmetric,
but it remains an open question whether other tests (or, perhaps, the PairSwap-ICI
but with a different kernel) may be able to avoid this assumption.

• Avoiding data splitting. The oracle matching test derived in Section 3 requires modeling
the conditional mean and conditional variance of the kernel ψ(Xi, Xj) as a function of
Yi, Yj, Zi, Zj. We proposed to estimate these moments on a hold-out data set. Can we
instead perform cross-fitting to improve power and retain finite-sample error control?

• Alternative methods. A notable benefit of our stochastic monotonicity assumption
is that one can consistently estimate the conditional distribution PX|Z using isotonic
distributional regression (Mösching and Dümbgen, 2020; Henzi, Ziegel and Gneiting,
2021). Hence, an alternative approach to testing the restricted null H ICI

0 is to first
estimate this conditional distribution on one split of the data, and then run a conditional
independence test which assumes knowledge of PX|Z (Berrett et al., 2020; Candès et al.,
2018). Since we are plugging in the estimated conditional distribution, such tests will
only be valid asymptotically. Is there any way to modify such tests to be valid in finite
samples?
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• Connection with knockoffs and conditional randomization tests. Creating synthetic
copies ofX via pairwise swaps has resemblance to other conditional independence testing
procedures, such as knockoffs and the conditional randomization test (Candès et al.,
2018), and the conditional permutation test (Berrett et al., 2020). One difference is that
in our method, due to the stochastic ordering assumption, creating the swapped copies
of X is potentially more conservative (i.e., the resulting p-value may be superuniform),
since we are not working under the “sharp null”.

• Alternative shape constraints. We view stochastic monotonicity as one form of positive
dependence for the joint distribution (X,Z). Are there natural approaches to test
conditional independence under other models of dependence, such as likelihood-ratio
ordering or total positivity, or under other shape constraints, such as unimodality
(Karlin, 1968; Shaked and Shanthikumar, 2007; Mösching and Dümbgen, 2024)?
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Mösching, A. and Dümbgen, L. (2024) Estimation of a likelihood ratio ordered family of
distributions. Stat. Comput., 34, Paper No. 58, 16.

Neykov, M., Balakrishnan, S. and Wasserman, L. (2021) Minimax optimal conditional
independence testing. Ann. Statist., 49, 2151–2177.

Niu, Z., Chakraborty, A., Dukes, O. and Katsevich, E. (2024) Reconciling model-X and
doubly robust approaches to conditional independence testing. The Annals of Statistics,
52, 895–921.

O’Mahony, C., Jichi, F., Pavlou, M., Monserrat, L., Anastasakis, A., Rapezzi, C., Biagini, E.,
Gimeno, J. R., Limongelli, G., McKenna, W. J. et al. (2014) A novel clinical risk prediction
model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). European
Heart Journal, 35, 2010–2020.

27
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A Proof of Theorem 2

The proof of this result follows the same structure as the proof of Theorem 1.

Step 1: some deterministic properties of the p-value. Define a function p̂M : Rn ×
({±1}L)M → [0, 1] as

p̂M(x; s(1), . . . , s(M)) =
1 +

∑M
m=1 1

{
T (xs(m)

) ≥ T (x)
}

1 +M
.

As in the proof of Theorem 1, this function is monotone nonincreasing in each xiℓ , and
monotone nondecreasing in each xjℓ .

Step 2: compare to the sharp null. Define X♯ as in the proof of Theorem 1. Following
identical arguments as in that proof, we can verify that, for any fixed s(1), . . . , s(M), it holds
that

p̂M
(
X♯; s

(1), . . . , s(M)
)
⪯st p̂M

(
X; s(1), . . . , s(M)

)
conditional on Y,Z. Since p̂M = p̂M(X; s(1), . . . , s(M)) by construction, we therefore have

P
{
p̂M ≤ α

∣∣ Y,Z, s(1), . . . , s(M)
}
≤ P

{
p̂M
(
X♯; s

(1), . . . , s(M)
)
≤ α

∣∣ Y,Z, s(1), . . . , s(M)
}
.
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Marginalizing over the random draw of the swaps, s(1), . . . , s(M) iid∼ Unif({±1}L), we therefore
have

P {p̂M ≤ α | Y,Z} ≤ P
{
p̂M
(
X♯; s

(1), . . . , s(M)
)
≤ α

∣∣ Y,Z} .
Step 3: validity under the sharp null. We now need to verify the validity of the Monte
Carlo p-value, under the sharp null. Unlike the first two steps, for this step the arguments
are somewhat different than in the proof of Theorem 1.

First, let s(0) be an additional draw from Unif({±1}L), sampled independently from all other
random variables. Then it holds that

(s(1), . . . , s(M))
d
=
(
s(0) ◦ s(1), . . . , s(0) ◦ s(M)

)
,

where ◦ denotes the elementwise product, and so

p̂M
(
X♯; s

(1), . . . , s(M)
) d
= p̂M

(
X♯; s

(0) ◦ s(1), . . . , s(0) ◦ s(M)
)

conditional on Y,Z. Moreover, by construction of the sharp null data X♯,

X♯
d
= (X♯)

s(0)

holds conditional on Y,Z, s(0), s(1), . . . , s(M), and therefore

p̂M

(
X♯; s

(0) ◦ s(1), . . . , s(0) ◦ s(M)
)

d
= p̂M

(
(X♯)

s(0) ; s(0) ◦ s(1), . . . , s(0) ◦ s(M)
)

holds conditional on Y,Z, s(0), s(1), . . . , s(M). Combining all these calculations so far, then,
we have

p̂M
(
X♯; s

(1), . . . , s(M)
) d
= p̂M

(
(X♯)

s(0) ; s(0) ◦ s(1), . . . , s(0) ◦ s(M)
)
, (22)

conditional on Y,Z.

Next we calculate this last p-value: by definition,

p̂M

(
(X♯)

s(0) ; s(0) ◦ s(1), . . . , s(0) ◦ s(M)
)
=

1 +
∑M

m=1 1

{
T
(
(X♯)

s(m)
)
≥ T

(
(X♯)

s(0)
)}

1 +M

=

∑M
m=0 1

{
T
(
(X♯)

s(m)
)
≥ T

(
(X♯)

s(0)
)}

1 +M
,

where the first step holds since, for each m = 1, . . . ,M ,[
(X♯)

s(0)
]s(0)◦s(m)

= (X♯)
s(0)◦s(0)◦s(m)

= (X♯)
s(m)

by definition of the swap operation. In other words, the p-value p̂M

(
(X♯)

s(0) ; s(0)◦s(1), . . . , s(0)◦

s(M)
)
is simply comparing the value of the statistic T ((X♯)

s(0)) against the list of M + 1

values T ((X♯)
s(0)), . . . , T ((X♯)

s(M)
). We therefore have

P
{
p̂M

(
(X♯)

s(0) ; s(0) ◦ s(1), . . . , s(0) ◦ s(M)
)
≤ α

∣∣∣ X♯,Y,Z
}
≤ α,
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since, conditional on X♯,Y,Z, the sign vectors s(0), . . . , s(M) are i.i.d., and therefore the rank

of the statistic T ((X♯)
s(0)) among the list T ((X♯)

s(0)), . . . , T ((X♯)
s(M)

) is uniformly distributed.
Marginalizing over X♯, therefore,

P
{
p̂M

(
(X♯)

s(0) ; s(0) ◦ s(1), . . . , s(0) ◦ s(M)
)
≤ α

∣∣∣ Y,Z} ≤ α.

Finally, combining this with our earlier calculation (22), we have

P
{
p̂M
(
X♯; s

(1), . . . , s(M)
)
≤ α

∣∣ Y,Z} ≤ α,

which completes the proof.

B Proof of Lemma 3

For ℓ ∈ [L], let

uℓ = E [ψ(Xiℓ , Xjℓ) | Y,Z] and vℓ =
(
Var (ψ(Xiℓ , Xjℓ) | Y,Z)

)1/2
.

Then by Cauchy–Schwarz, for any (w1, . . . , wL) ∈ [0,∞)L,∑L
ℓ=1wℓE [ψ(Xiℓ , Xjℓ) | Y,Z]√∑L
ℓ=1w

2
ℓVar (ψ(Xiℓ , Xjℓ) | Y,Z)

=

∑L
ℓ=1wℓuℓ√∑L
ℓ=1w

2
ℓv

2
ℓ

≤
∑L

ℓ=1wℓ max{uℓ, 0}√∑L
ℓ=1w

2
ℓv

2
ℓ

=

∑L
ℓ=1(wℓvℓ) · max{uℓ,0}

vℓ√∑L
ℓ=1(wℓvℓ)2

≤
( L∑

ℓ=1

max{uℓ, 0}2

v2ℓ

)1/2

,

with equality if and only if wℓ ∝ max{uℓ, 0}/v2ℓ for ℓ ∈ [L].

C Proof of the results from Section 4

In this section, we prove the results presented in Section 4. Throughout this appendix,
we assume that the statistic T admits the form in (11) with ψ(x, x′) = x − x′, and that
Y = Z = R; the partial ordering ⪯ for Z will simply be the usual ordering ≤ on R. The
organization of this appendix is as follows.

• We begin in Appendix C.1 by proving finite sample and asymptotic upper and lower
bounds on the conditional power of PairSwap-ICI test for any valid matching and
weighting scheme, and any statistic T of the form (11) with a shared linear kernel
ψ(x, x′) = x− x′.

• Next, in Appendix C.2, we specialize these results to the oracle matching under two
cases: one assuming access to oracle knowledge of µ (i.e., Theorem 4) and another with
µ estimated from data (i.e., Theorem 5).

• Then, we shift our attention to the partially linear Gaussian models in (20). In
Appendices C.3 and C.4 we prove the asymptotic behavior of conditional power for
neighbour matching (Theorem 10) and for cross bin matching (Theorem 11), respectively.
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• In Appendix C.5 we prove the corollaries and lemmas from Section 4.

• In Appendix C.6 we introduce an oracle matching, namely isotonic median matching, and
discuss a key property of the same, which allows us to prove the results in Appendix C.2.

• Finally, in Appendix C.7 we prove the lemmas stated in Appendices C.1—C.4.

Notation. We write (X,Y,Z) as shorthand for independent triples (Xi, Yi, Zi)i∈[n]. For L ≡
Ln ∈ N, a matching {(i1, j1), (i2, j2), . . . , (iL, jL)} ∈ Mn(Z) and a vector V = (V1, . . . , Vn) ∈
Rn, we define ∆V = (∆1V, . . . ,∆LV) ∈ RL with entries ∆ℓV := Viℓ − Vjℓ . Given any
vector v, we write v+ to denote the vector with ith component vi+ = max{vi, 0}. We write
a ◦ b for the Hadamard product of vectors a, b of the same dimension, with ith component
ai · bi. For k ≥ 1 and a distribution Pζ on R with finite k-th moment, let

ρk =

(
Eζ,ζ′∼Pζ

ζ⊥⊥ζ′

[
|ζ − ζ ′|k

])1/k

. (23)

In particular, ρ2 =
√
2σ where σ2 is variance of Pζ .

C.1 A general result on power of PairSwap-ICI test

Here, we consider any valid matching and weighting scheme, and state finite-sample lower
and upper bounds on the conditional power P {p ≤ α | Y,Z} of PairSwap-ICI test. Further,
under the asymptotic regime of Section 4.1, we state asymptotic high-probability upper and
lower bounds for the same quantity. We first define several quantities in terms of the weight
vector w = (w1, . . . , wL) ∈ RL, δ > 0 and {ρk : k ≤ 6}, defined in (23): let

ϵ1,δ,U =
∥w ◦∆µ(Y,Z)∥22

ρ22∥w∥22
+

ρ24
ρ22δ

1/2

∥w∥∞
∥w∥2

+
2

ρ2δ1/2
∥w ◦∆µ(Y,Z)∥∞

∥w∥2
,

ϵ1,δ,L =
∥w ◦∆µ(Y,Z)∥22

ρ22∥w∥22
− ρ24
ρ22δ

1/2

∥w∥∞
∥w∥2

− 2

ρ2δ1/2
∥w ◦∆µ(Y,Z)∥∞

∥w∥2
,

ϵ2,δ =
0.56(

(1 + ϵ1,δ,L) ∨ 0
)3/2{(∥w ◦∆µ(Y,Z)∥2

ρ2∥w∥2

)2/3

·
(
∥w ◦∆µ(Y,Z)∥∞

ρ2∥w∥2

)1/3

+

(
ρ33
ρ32

∥w∥∞
∥w∥2

+
ρ36

δ1/2ρ32
· ∥w∥2∞
∥w∥22

)1/3}3

,

ϵ3,δ =
0.56ρ33
ρ32

· ∥w∥∞
∥w∥2

+ 5δ. (24)

Theorem C.12. Suppose that (X,Y,Z) satisfies (16), and that w = w(Y,Z) ∈ Rn is our
chosen weight vector, which is assumed to satisfy ∥w∥2 > 0. Write Ω0 := {∥w ◦∆X∥2 > 0}.
Then
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(i) For any δ > 0 and α ∈ (0, 1/2− ϵ2,δ],

Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1

(
(α− ϵ2,δ) ∨ 0

)
(1 + ϵ1,δ,U)

1/2

)
− ϵ3,δ − P {Ωc

0 | Y,Z}

≤ P {p ≤ α | Y,Z} ≤ Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1(α + ϵ2,δ) ·

(
(1 + ϵ1,δ,L) ∨ 0

)1/2)
+ ϵ3,δ,

where ϵ1,δ,U , ϵ1,δ,L, ϵ2,δ, and ϵ3,δ are as in (24).

(ii) Further, suppose that the weights and matching scheme satisfy

Assumption A1. ∥w∥∞ ∨
(
∥w ◦∆µ(Y,Z)∥2/32 · ∥w ◦∆µ(Y,Z)∥1/3∞

)
= oP (∥w∥2).

Assumption A2. ∥w ◦∆µ(Y,Z)∥2 = oP
(
wT∆µ(Y,Z)

)
.

Then for α ∈ (0, 1/2),

Φ

(
wT∆µ(Y,Z)√

2σ∥w∥2
− Φ̄−1(α)

)
− oP (1) ≤ P {p ≤ α | Y,Z}

≤ Φ

(
wT∆µ(Y,Z)√

2σ∥w∥2
− Φ̄−1(α)

)
+ oP (1).

Proof. We note that for fixed n ∈ N, and conditional on (X,Y,Z), the quantity sT (w ◦∆X)
is a sum of independent random variables {sℓ · wℓ ·∆ℓX}ℓ∈[L], and has mean 0 and variance

∥w ◦ ∆X∥22. Hence, writing U := 1T (w◦∆X)
∥w◦∆X∥2 1Ω0 , we have by the Berry–Esseen theorem

(Shevtsova, 2010, Theorem 1) that on Ω0,

|p− Φ̄(U)| ≤ sup
x∈R

∣∣∣∣P{sT (w ◦∆X)

∥w ◦∆X∥2
≥ x

∣∣∣∣ X,Y,Z}− Φ̄(x)

∣∣∣∣ ≤ 0.56 · ∥w ◦∆X∥33
∥w ◦∆X∥32

.

Hence, since p = 1 on Ωc
0, we therefore have

P
[{

U ≥ Φ̄−1

((
α− 0.56

∥w ◦∆X∥33
∥w ◦∆X∥32

)
∨ 0

)}⋂
Ω0

∣∣∣∣ Y,Z] ≤ P {p ≤ α | Y,Z}

≤ P
[{

U ≥ Φ̄−1

((
α + 0.56

∥w ◦∆X∥33
∥w ◦∆X∥32

)
∧ 1

)}⋂
Ω0

∣∣∣∣ Y,Z].
Now 1T (w ◦ ∆X) = wT∆X = wT∆µ(Y,Z) + wT∆ζ and wT∆µ(Y,Z) is a measurable
function of (Y,Z). On the other hand, conditional on (Y,Z), the quantity wT∆ζ is a sum of
independent random variables {wℓ ·∆ℓζ}ℓ∈[L], and has mean 0 and variance ρ22∥w∥22. Another
application of the Berry–Esseen theorem then yields that

sup
x∈R

∣∣∣∣P{ wT∆ζ

ρ2∥w∥2
≥ x

∣∣∣∣Y,Z}− Φ̄(x)

∣∣∣∣ ≤ 0.56ρ33
ρ32

· ∥w∥33
∥w∥32

≤ 0.56ρ33
ρ32

· ∥w∥∞
∥w∥2

. (25)
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Thus, recalling the events Ω2 and Ω3 from Lemma C.19 we have by that lemma that

P
[{

U ≥ Φ̄−1

((
α + 0.56

∥w ◦∆X∥33
∥w ◦∆X∥32

)
∧ 1

)}⋂
Ω0

∣∣∣∣ Y,Z]
≤ P

[{
wT∆ζ

ρ2∥w∥2
≥ −wT∆µ(Y,Z)

ρ2∥w∥2
+

∥w ◦∆X∥2
ρ2∥w∥2

Φ̄−1(α + ϵ2,δ)

}⋂
Ω0

∣∣∣∣ Y,Z]+ P {Ωc
3}

≤ P
[{

wT∆ζ

ρ2∥w∥2
≥ −wT∆µ(Y,Z)

ρ2∥w∥2
+ Φ̄−1(α + ϵ2,δ)

(
(1 + ϵ1,δ,L) ∨ 0

)1/2}⋂
Ω0

∣∣∣∣ Y,Z]
+ P {Ωc

2}+ P {Ωc
3}

≤ Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1(α + ϵ2,δ) ·

(
(1 + ϵ1,δ,L) ∨ 0

)1/2)
+

0.56ρ33
ρ32

· ∥w∥∞
∥w∥2

+ 5δ

≤ Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1(α + ϵ2,δ) ·

(
(1 + ϵ1,δ,L) ∨ 0

)1/2)
+ ϵ3,δ.

Similarly, recalling the events Ω1,Ω2 and Ω3 from Lemma C.19 for the lower bound, and
writing Ω∗

0 = Ω0 ∩ Ω1 ∩ Ω3,

P
[{

U ≥ Φ̄−1

((
α− 0.56

∥w ◦∆X∥33
∥w ◦∆X∥32

)
∨ 0

)}⋂
Ω0

∣∣∣∣ Y,Z]
≥ P

[{
wT∆ζ

ρ2∥w∥2
≥ −wT∆µ(Y,Z)

ρ2∥w∥2
+

∥w ◦∆X∥2
ρ2∥w∥2

Φ̄−1
(
(α− ϵ2,δ) ∨ 0

)}⋂
Ω∗

0

∣∣∣∣ Y,Z]
≥ P

[{
wT∆ζ

ρ2∥w∥2
≥ −wT∆µ(Y,Z)

ρ2∥w∥2
+ Φ̄−1

(
(α− ϵ2,δ) ∨ 0

)
(1 + ϵ1,δ,U)

1/2

}⋂
Ω∗

0

∣∣∣∣ Y,Z]
≥ Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1

(
(α−ϵ2,δ) ∨ 0

)
(1+ϵ1,δ,U)

1/2

)
− 0.56ρ33∥w∥∞

ρ32∥w∥2
− P {Ω∗c

0 | Y,Z}

≥ Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1

(
(α− ϵ2,δ) ∨ 0

)
(1 + ϵ1,δ,U)

1/2

)
− ϵ3,δ − P {Ωc

0 | Y,Z} .

This completes the proof of the first part of the result.

For the second part, define

ϵ1,δ :=
ρ24

ρ22δ
1/2

· ∥w∥∞
∥w∥2

+
2

ρ2δ1/2
· ∥w ◦∆µ(Y,Z)∥∞

∥w∥2
= oP (1),

by Assumption A1, and observe that (1 + ϵ1,δ,U)
1/2 ≤ ∥w◦∆µ(Y,Z)∥2

ρ2∥w∥2 + (1 + ϵ1,δ)
1/2 and

(1 + ϵ1,δ,L)
1/2 ≥ (1− ϵ1,δ)

1/2. It follows by Assumption A1 that ϵ2,δ = oP (1). Moreover,

lim sup
n→∞

P {Ωc
0 | Y,Z} ≤ lim sup

n→∞
P {Ωc

2 ∩ {1 + ϵ1,δ,L > 0} | Y,Z}+ lim sup
n→∞

P {1 + ϵ1,δ,L ≤ 0}

= lim sup
n→∞

P {Ωc
2 | Y,Z} ≤ 2δ.
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Now, ϵ3,δ − 5δ = oP (1) by Assumption A1. Thus, by Assumption A2 and part (i),

P {p ≤ α | Y,Z}

≥ Φ

(
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1

(
α−oP (1)

)(∥w ◦∆µ(Y,Z)∥2
ρ2∥w∥2

+
(
1+oP (1)

)))
− oP (1)−7δ

= Φ

((
wT∆µ(Y,Z)

ρ2∥w∥2
− Φ̄−1(α) + oP (1)

)(
1 + oP (1)

))
− oP (1)− 7δ,

and since δ > 0 was arbitrary, the desired asymptotic lower bound holds by noting that
ρ2 =

√
2σ. The asymptotic upper bound follows by a very similar (in fact, slightly more

straightforward) argument.

C.2 Proof of Theorems 4 and 5

We first consider the more practical setting where µ is estimated from data, and prove
Theorem 5 using the general upper and lower bounds on the conditional power of the
PairSwap-ICI test from Theorem C.12. Theorem 4 will then follow as a special case of
Theorem 5.

Before turning to the proofs, we observe from Lemma 3 that under the model class (16) and
with the linear kernel ψ(x, x′) = x− x′, the oracle weights in (13) satisfy w∗

ℓ ∝
(
µ(Yiℓ , Ziℓ)−

µ(Yjℓ , Zjℓ)
)
+
for ℓ ∈ [L]. Since the p-value of our test is independent of the scales of weights,

we may take w∗ = ∆µ+(Y,Z). When we do not have access to oracle knowledge of µ, we
assume that we are able to learn estimates µ̂ and σ̂ of µ and σ respectively from a prior
dataset Dprior, independent of (X,Y,Z). With these estimates in place, the plug-in weights
satisfy ŵℓ ∝

(
µ̂(Yiℓ , Ziℓ)− µ̂(Yjℓ , Zjℓ)

)
+
, i.e., we may take ŵ = ∆µ̂+(Y,Z).

Given (Y,Z) ∈ Rn × Rn, we define

µ̂ISO(Y,Z) = argmin
g∈CISO

∥µ(Y,Z)− g(Z)∥2, (26)

the empirical isotonic Euclidean projection of µ onto CISO.

C.2.1 Proof of Theorem 5

Our proof is split into three steps. First we establish a key property of the oracle matchingM⋆

and use this to deduce relative error properties of µ̂. These in turn enable us to show
that Assumptions A1 and A2 of Theorem C.12 are satisfied by M̂ and weight vector
w = ∆µ̂+(Y,Z). Finally we apply part (ii) of Theorem C.12 to conclude the proof.

We write

Err2(µ̂, µ) =
∥∆µ̂(Y,Z)−∆µ(Y,Z)∥2

∥∆µ+(Y,Z)∥2
,

Err∞(µ̂, µ) =
∥∆µ̂(Y,Z)−∆µ(Y,Z)∥4∞

∥∆µ+(Y,Z)∥2
.
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Step 1: a key property of oracle matching and its implications. Our notation
∆µ(Y,Z) and ∆µ̂(Y,Z) suppresses the dependence of the matching M for which it is
computed. Since we will need both matchings M⋆ and M̂ in this step, we make the
dependence on the matching explicit by writing ∆µ̂(Y,Z;M), where M ∈ Mn(Z).

By Lemma C.13, Theorem C.18 and the definition of M∗ ∈ Mn(Z) from (14), we have

ÎSSn ≤ ∥∆µ+(Y,Z;M⋆)∥2 = sup
M∈Mn(Z)

∥∆µ+(Y,Z;M)∥2 ≤
√
2 ÎSSn. (27)

Now, for any M ∈ Mn(Z),∣∣∥∆µ̂+(Y,Z;M)∥2 − ∥∆µ+(Y,Z;M)∥2
∣∣ ≤ ∥∆µ̂+(Y,Z;M)−∆µ+(Y,Z;M)∥2
≤ ∥∆µ̂(Y,Z;M)−∆µ(Y,Z;M)∥2
≤

√
2∥µ̂(Y,Z)− µ(Y,Z)∥2 = oP (ÎSSn), (28)

where the final step is from the hypothesis in the statement of the result. Further by (15),

∥∆µ̂+(Y,Z; M̂)∥2 ≥ ∥∆µ̂+(Y,Z;M⋆)∥2 ≥ ∥∆µ+(Y,Z;M⋆)∥2−oP (ÎSSn) ≥ ÎSSn

(
1−oP (1)

)
.

(29)
Similarly, by (28),

∥∆µ+(Y,Z; M̂)∥2 ≥ ∥∆µ̂+(Y,Z; M̂)∥2 − oP (ÎSSn) ≥ ÎSSn

(
1− oP (1)

)
. (30)

We deduce that for plug-in matching,

max

{
∥µ(Y,Z)∥∞ ∨ ∥µ(Y,Z)∥4∞

∥∆µ+(Y,Z)∥2
, Err2(µ̂, µ), Err∞(µ̂, µ)

}
= oP (1). (31)

Step 2: establishing Assumptions A1 and A2. Henceforth we work with the matching
M̂ . We have by (27) that

∥∆µ̂+(Y,Z) ◦∆µ(Y,Z)∥2
≤ ∥∆µ+(Y,Z) ◦∆µ(Y,Z)∥2 +

∥∥(∆µ̂+(Y,Z)−∆µ+(Y,Z)
)
◦∆µ(Y,Z)

∥∥
2

≤ ∥∆µ+(Y,Z)∥24 + ∥∆µ(Y,Z)∥∞ · ∥∆µ̂(Y,Z)−∆µ(Y,Z)∥2

≤ 2∥µ(Y,Z)∥∞∥∆µ+(Y,Z)∥2 ·
(
1 + Err2(µ̂, µ)

)
= oP

(
ÎSS

2

n

)
.

Moreover, by the Cauchy–Schwarz inequality, (27) and (28),∣∣∆µ̂+(Y,Z)T∆µ(Y,Z)− ∥∆µ̂+(Y,Z)∥22
∣∣ = ∣∣(∆µ̂(Y,Z)−∆µ(Y,Z)

)T
∆µ̂+(Y,Z)

∣∣
≤ ∥∆µ̂+(Y,Z)∥2 · ∥∆µ+(Y,Z)∥2 · Err2(µ̂, µ)

= oP
(
ÎSS

2

n

)
. (32)

Hence, by (31), Assumption A2 is satisfied by M̂ . Moreover, (31) also yields that

∥∆µ̂+(Y,Z)∥∞
∥∆µ̂+(Y,Z)∥2

≤ ∥∆µ+(Y,Z)∥∞ + ∥∆µ̂(Y,Z)−∆µ(Y,Z)∥2
∥∆µ+(Y,Z)∥2 − ∥∆µ̂(Y,Z)−∆µ(Y,Z)∥2

≤
2
(
∥µ(Y,Z)∥∞/∥∆µ+(Y,Z)∥2

)
+ Err2(µ̂, µ)

1− Err2(µ̂, µ)
= oP (1).
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Now, we focus on the other term that appears in Assumption A1. By (31) and (27),

∥∆µ̂+(Y,Z) ◦∆µ(Y,Z)∥2/32

≤
(
∥∆µ+(Y,Z) ◦∆µ+(Y,Z)∥2 + ∥

(
∆µ̂+(Y,Z)−∆µ+(Y,Z)

)
◦∆µ(Y,Z)∥2

)2/3
≤
(
∥∆µ+(Y,Z)∥24 + Err2(µ̂, µ) · ∥∆µ+(Y,Z)∥2 · ∥∆µ(Y,Z)∥∞

)2/3
≤ ∥∆µ(Y,Z)∥2/3∞ · ∥∆µ+(Y,Z)∥2/32 ·

(
1 + oP (1)

)
≤ ∥∆µ(Y,Z)∥2/3∞ · 21/3ÎSS

2/3

n ·
(
1 + oP (1)

)
.

Moreover, again by (31),

∥∆µ̂+(Y,Z) ◦∆µ(Y,Z)∥1/3∞

≤ ∥∆µ+(Y,Z)∥2/3∞ + ∥∆µ̂(Y,Z)−∆µ(Y,Z)∥1/3∞ ∥∆µ(Y,Z)∥1/3∞

≤ ∥∆µ(Y,Z)∥1/32

∥∆µ(Y,Z)∥2/3∞

(
24/3∥µ(Y,Z)∥4/3∞

∥∆µ(Y,Z)∥1/32

+ Err1/12∞ (µ̂, µ)
2∥µ(Y,Z)∥∞

∥∆µ+(Y,Z)∥1/42

)

= oP

(
ÎSS

1/3

n

∥∆µ(Y,Z)∥2/3∞

)
.

Hence, by (29) we see that Assumption A1 is satisfied by plug-in matching.

Step 3: applying Theorem C.12. By (28), (29) and (32),∣∣∣∣∆µ̂+(Y,Z)T∆µ(Y,Z)

∥∆µ̂+(Y,Z)∥2
− ∥∆µ+(Y,Z)∥2

∣∣∣∣ = oP (ÎSSn).

Hence, by (27) and (30),

ÎSSn

(
1− oP (1)

)
≤ ∆µ̂+(Y,Z)T∆µ(Y,Z)

∥∆µ̂+(Y,Z)∥2
≤

√
2 · ÎSSn

(
1 + oP (1)

)
.

Finally the result follows from part (ii) of Theorem C.12. □

Lemma C.13. For any M ∈ Mn(Z), we have ∥∆µ+(Y,Z)∥2 ≤
√
2 ÎSSn.

Proof. By definition, ÎSSn = ∥µ(Y,Z)− µ̂ISO(Z)∥2 where µ̂ISO is as defined in (26). Recall
that

(
∆µ+(Y,Z)

)
ℓ
=
(
µ(Yiℓ , Ziℓ)− µ(Yjℓ , Zjℓ)

)
+
for ℓ ∈ [L]. We claim that(

µ
(
Yiℓ , Ziℓ

)
− µ

(
Yjℓ , Zjℓ

))
+
≤
∣∣µ(Yiℓ , Ziℓ

)
− µ̂ISO

(
Ziℓ

)∣∣+ ∣∣µ̂ISO

(
Zjℓ

)
− µ

(
Yjℓ , Zjℓ

)∣∣ (33)

for every ℓ ∈ [L]. To see this, we may assume that µ
(
Yiℓ , Ziℓ

)
> µ

(
Yjℓ , Zjℓ

)
since otherwise

the left-hand side is zero. Now, if µ̂ISO

(
Ziℓ

)
≥ µ

(
Yjℓ , Zjℓ

)
, then

µ
(
Yiℓ , Ziℓ

)
− µ

(
Yjℓ , Zjℓ

)
≤
∣∣µ(Yiℓ , Ziℓ

)
− µ̂ISO

(
Ziℓ

)∣∣+ µ̂ISO

(
Ziℓ

)
− µ

(
Yjℓ , Zjℓ

)
≤
∣∣µ(Yiℓ , Ziℓ

)
− µ̂ISO

(
Ziℓ

)∣∣+ µ̂ISO

(
Zjℓ

)
− µ

(
Yjℓ , Zjℓ

)
.
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Otherwise, if µ̂ISO

(
Ziℓ

)
< µ

(
Yjℓ , Zjℓ

)
, then

µ
(
Yiℓ , Ziℓ

)
− µ

(
Yjℓ , Zjℓ

)
< µ

(
Yiℓ , Ziℓ

)
− µ̂ISO

(
Ziℓ

)
≤ µ

(
Yiℓ , Ziℓ

)
− µ̂ISO

(
Ziℓ

)
+
∣∣µ̂ISO

(
Zjℓ

)
− µ

(
Yjℓ , Zjℓ

)∣∣.
This proves the claim (33), and it follows that

∥∆µ+(Y,Z)∥22 ≤ 2
L∑

ℓ=1

{
µ
(
Yiℓ , Ziℓ

)
− µ̂ISO

(
Ziℓ

)}2
+ 2

L∑
ℓ=1

{
µ
(
Yjℓ , Zjℓ

)
− µ̂ISO

(
Zjℓ

)}2
≤ 2

n∑
i=1

{
µ(Yi, Zi)− µ̂ISO(Zi)

}2
= 2∥Resn(Y,Z)∥22,

which proves the result.

C.2.2 Proof of Theorem 4

Given access to oracle knowledge of µ, we observe that µ̂ = µ satisfies the assumptions of
Theorem 5. Hence, Theorem 4 follows as an immediate corollary of Theorem 5. □

C.3 Proof of Theorem 10

Let us define π as any permutation of [n] for which

Zπ(1) ≤ Zπ(2) ≤ . . . ≤ Zπ(n),

and note that the collection of matched pairs for neighbour matching is given by M :={(
π(2ℓ − 1), π(2ℓ)

)}
ℓ∈⌊n/2⌋. By part (ii) of Theorem C.12, with w = ∆Y+ the dominant

term in the upper and lower bound on conditional power reduces to

∆Y+T
∆µ(Y,Z)

ρ2∥∆Y+∥2
.

Since ρ2 =
√
2σ, by the same result it suffices to prove a concentration of the dominant term

as
∆Y+T

∆µ(Y,Z)

∥∆Y+∥2
=
√
n/2 · βn ·

{
E [Var (Y | Z)]

}1/2
+ oP (1),

and that the Assumptions A1 and A2 are satisfied.

Step 1: concentration of the dominant term. Under the partially linear Gaussian
models (20),

∆Y+T
∆µ(Y,Z) = ∆Y+T

∆µ0(Z) + βn∥∆Y+∥22,

where the first term is negative since µ0 ∈ CISO. In fact, we can say more. Firstly,∣∣∆Y+T
∆µ0(Z)

∣∣ ≤ ∥∆Y+ ◦∆µ0(Z)∥1 ≤ ∥∆Y+∥∞∥∆µ0(Z)∥1.
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Since µ0 ∈ CISO, we further have that

∥∆µ0(Z)∥1 =
⌊n/2⌋∑
ℓ=1

(
µ0(Zπ(2ℓ))− µ0(Zπ(2ℓ−1))

)
≤

n∑
i=2

(
µ0(Zπ(i))− µ0(Zπ(i−1))

)
= µ0(Zπ(n))− µ0(Zπ(1)) ≤ 2∥µ0(Z)∥∞. (34)

Moreover by Lemma C.20, we have that∣∣∣ 1

n/2
∥∆Y+∥22 − E [Var (Y | Z)]

∣∣∣ = oP (1),

which also implies that ∥∆Y+∥2 ≥
√
n/2 ·

{
E [Var (Y | Z)]

}1/2 − oP (
√
n). Since Y ∈ [−1, 1]

and µ0(Z) is sub-Gaussian, it follows that∣∣∣∣∆Y+T
∆µ(Y,Z)

∥∆Y+∥2
−
√
n/2 · βn ·

{
E [Var (Y | Z)]

}1/2∣∣∣∣
≤
∣∣∣∣∆Y+T

∆µ(Y,Z)

∥∆Y+∥2
− βn∥∆Y+∥2

∣∣∣∣+ ∣∣∣∣βn∥∆Y+∥2 −
√
n/2 · βn ·

{
E [Var (Y | Z)]

}1/2∣∣∣∣
≤ 4

∥µ0(Z)∥∞
∥∆Y+∥2

+ oP (βn
√
n) = oP (1),

where the last equality follows by recalling that µ0(Z) is sub-Gaussian and βn ≳ n−1/2.

Step 2: establishing Assumptions A1 and A2. Since Y ∈ [−1, 1],

∥∆Y+ ◦∆µ(Y,Z)∥∞ ≤ ∥∆Y+ ◦∆µ0(Z)∥∞ + βn∥∆Y+∥2∞ ≤ 4
(
∥µ0(Z)∥∞ + βn

)
.

Moreover, by an argument, similar to that in (34), we have that

∥∆Y+ ◦∆µ(Y,Z)∥2 ≤ ∥∆Y+ ◦∆µ0(Z)∥2 + βn∥∆Y+∥24
≤ ∥∆Y+∥∞∥∆µ0(Z)∥∞∥∆µ0(Z)∥1 + βn∥∆Y+∥∞∥∆Y+∥2

≤ ∥∆Y+∥∞
(
∥∆µ0(Z)∥∞

n∑
i=2

(
µ0(Zπ(i))− µ0(Zπ(i−1))

)
+ βn∥∆Y+∥2

)
≤ 2
(
4∥µ0(Z)∥2∞ + βn∥∆Y+∥2

)
.

Since µ0(Z) is sub-Gaussian and that ∥∆Y+∥2 ≥
√
n/2 ·

{
E [Var (Y | Z)]

}1/2 − oP (
√
n),

Assumption A1 is satisfied by the neighbour matching. Similarly, by (34) and recalling that
βn ≳ 1/

√
n, it follows that

∥∆Y+ ◦∆µ(Y,Z)∥2
∆Y+T∆µ(Y,Z)

≤
2
(
4∥µ0(Z)∥2∞ + βn∥∆Y+∥2

)
−4∥µ0(Z)∥∞ + βn∥∆Y+∥22

= oP (1).

Hence Assumption A2 holds too, which completes the proof. □
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C.4 Power of cross bin matching

In this section, we study power of the PairSwap-ICI test for cross-bin matching. We will start
with stating and proving a concentration result for the conditional power of cross-bin matching
in Theorem C.14. This subsequently leads to the proof of Theorem 11 in Appendix C.4.2.
Before diving into the main results, we establish some necessary notations.

Definition 1. For any distribution P , we define the deviation of P as

Dev(P ) := Eq∼Unif[0,1]

[
(F−1(1− q)− F−1(q))2

]
, (35)

where F−1 is the generalized inverse CDF of P .

C.4.1 A general version of Theorem 11: asymptotic conditional power of cross
bin matching

Theorem C.14. Under the model class (20) suppose βn ≳ 1/
√
n. Additionally, also assume

that

(i) µ0(Z) is a sub-Gaussian random variable, and the function µ0 satisfies the Lipschitz
property

(36)

(ii) there exists a constant LW ≥ 0 such that for any z1, z2 ∈ R,

dW1

(
PY |Z(· | z1), PY |Z(· | z2)

)
≤ LW |PZ(z1)− PZ(z2)| , (37)

where dW1(·, ·) is the 1-Wasserstein distance.

Then, the conditional power of cross-bin matching (Algorithm 2), implemented with kernel
ψ(x, x′) = x− x′ and weights wℓ = max{(Yiℓ − Yjℓ , 0)}, satisfies∣∣P {p ≤ α | Y,Z} − Φ

(√
n/2 ·

(
βn/σ

)
·
(
E
[
Dev(PY |Z)

])1/2 − Φ̄−1(α)
) ∣∣ = oP (1).

Proof. The proof follows the same key steps as from the Appendix C.3. By part (ii) of
Theorem C.12 and with replacing w = ∆Y+, the dominant term in the upper and lower
bound on conditional power reduces to

∆Y+T
∆µ(Y,Z)

ρ2∥∆Y+∥2
,

Since ρ2 =
√
2σ, it suffices to prove a concentration of the dominant term as

∆Y+T
∆µ(Y,Z)

∥∆Y+∥2
=
√
n/2 · βn ·

{
E
[
Dev(PY |Z)

]}1/2
+ oP (1),

and that the Assumptions A1 and A2 are satisfied.
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Step 1: concentration of the dominant term. Under the partially linear Gaussian
model (20),

∆Y+T
∆µ(Y,Z) = ∆Y+T

∆µ0(Z) + β∥∆Y+∥22,
where for the first term, it holds that

∣∣∆Y+T
∆µ0(Z)

∣∣ = Ln∑
ℓ=1

|Yiℓ,n − Yjℓ,n |
∣∣µ0(Zjℓ,n)− µo(Ziℓ,n)

∣∣ ≤ n∥∆Y+∥∞∥∆µ0(Z)∥∞. (38)

Next, we analyze the large sample behaviour of ∥∆Y+∥22. Conditioned on Z, ∥∆Y+∥22 is a
sum of independent and uniformly bounded terms. Hence, by the law of large numbers,∣∣∣∣ 1

n/2
∥∆Y+∥22 − E

[
1

n/2
∥∆Y+∥22

∣∣∣∣ Z]∣∣∣∣ = oP (1).

Finally, by Lemma C.21 we have that∣∣∣∣ 1

n/2
∥∆Y+∥22 − E

[
Dev(PY |Z)

]∣∣∣∣ = oP (1). (39)

Since µ0 is Lµ- Lipschitz, we note that ∥∆µ0(Z)∥∞ = OP (1/
√
n). Combining behaviour of

both terms, we have that

∆Y+T
∆µ(Y,Z)

ρ2∥∆Y+∥2
=

−OP (
√
n) + β∥∆Y+∥22

ρ2∥∆Y+∥2
= (β/ρ2) · ∥∆Y+∥2 − oP (1)

= (β/ρ2)
(√

(n/2) ·
√
E
[
Dev(PY |Z)

]
+ oP (

√
n)
)
− oP (1).

Since ρ2 =
√
2σ, the result follows by Theorem C.12 as long as we can show that Assump-

tion A1 and A2 are satisfied.

Step 2: establishing Assumptions A1 and A2. Since Y ∈ [−1, 1],

∥∆Y+ ◦∆µ(Y,Z)∥∞ ≤ ∥∆Y+ ◦∆µ0(Z)∥∞ + βn∥∆Y+∥2∞ ≤ 4
(
∥µ0(Z)∥∞ + βn

)
.

Similarly, we also have that

∥∆Y+ ◦∆µ(Y,Z)∥2 ≤ ∥∆Y+ ◦∆µ0(Z)∥2 + βn∥∆Y+∥24
≤ ∥∆Y+∥2

(
∥∆µ0(Z)∥∞ + βn∥∆Y+∥∞

)
≤ 2∥∆Y+∥2

(
∥µ0(Z)∥∞ + βn

)
.

Since µ0(Z) is sub-Gaussian and that ∥∆Y+∥2 ≥
√
n/2 ·

{
E
[
Dev(PY |Z)

]}1/2 − oP (
√
n),

Assumption A1 is satisfied by the cross-bin matching. Moreover, by (38) and recalling that
βn ≳ 1/

√
n, it follows that

∥∆Y+ ◦∆µ(Y,Z)∥2
∆Y+T∆µ(Y,Z)

≤
2∥∆Y+∥2

(
∥µ0(Z)∥∞ + βn

)
−n∥∆Y+∥∞∥∆µ0(Z)∥∞ + βn∥∆Y+∥22

= oP (1).

Hence Assumption A2 holds too, which completes the proof.
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C.4.2 Proof of Theorem 11

Observe that for any q ̸= 0.5,

(QP (1− q)−QP (0.5) · (QP (0.5)−QP (q)) ≥ 0.

Therefore, for any distribution P , we have that

Dev(P ) = Eq∼Unif[0,1]

[[
QP (1− q)−QP (0.5) +QP (0.5)−QP (q)

]2]
≥ Eq∼Unif[0,1]

[[
QP (1− q)−QP (0.5)

]2
+
[
QP (0.5)−QP (q)

]2]
= 2Eq∼Unif[0,1]

[
(QP (q)−QP (0.5))

2
]

= 2EX∼P

[
(X −Median(P ))2

]
≥ 2VarX∼P (X) .

Hence, it follows that
E
[
Dev(PY |Z)

]
≥

√
2E [Var (Y | Z)]

The result now follows from Theorem C.14. □

C.4.3 Matching upper and lower bounds on conditional power

In (18), the asymptotic upper and lower bounds on conditional power for oracle matching
match up to a factor of

√
2. In this section, we try to answer the natural question: can we

close out this gap? We note that in Appendix C.2.1, this gap arises from (27), i.e.,

ÎSSn ≤ ∥∆µ+(Y,Z)∥2 ≤
√
2 ÎSSn,

where ∥∆µ+(Y,Z)∥2 is computed for the oracle matching.

Without additional assumptions on the model, it is unclear whether for oracle matching one
can ensure ∥∆µ+(Y,Z)∥2 ≈

√
2 ÎSSn. However, the proof of Lemma C.13 suggests that it

possible if oracle matching satisfies

Ziℓ ≈ Zjℓ so that µ̂ISO(Ziℓ) ≈ µ̂ISO(Ziℓ), and µ(Yiℓ , Ziℓ) ≈ −µ(Yjℓ , Zjℓ).

However, we need to assume symmetry of µ(Y, Z) conditional on Z to have µ(Yiℓ , Ziℓ) ≈
−µ(Yjℓ , Zjℓ). We investigate this in greater details for the special case of partial linear
Gaussian model (20). With this additional structure, and the restriction Ziℓ ≈ Zjℓ , we only
need to ensure Yiℓ ≈ −Yjℓ .

We show that under symmetry of the conditional distribution of PY |Z , even cross-bin matching
can attain the upper bound on asymptotic conditional power of oracle matching in (18) and
thus, oracle matching will attain it too.

Corollary C.15. Under the setting of Theorem C.14, if PY |Z is symmetric almost surely,
then the conditional power of cross-bin matching satisfies∣∣∣∣∣P {p ≤ α | Y,Z} − Φ

(
√
nβn

{
E [Var (Y | Z)]

σ2

}1/2

− Φ̄−1(α)

)∣∣∣∣∣ = oP (1).
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Proof. If PY |Z=z is symmetric, then

QPY |Z=z
(1− q)−QPY |Z=z

(q) = 2
(
QPY |Z=z

(1− q)−QPY |Z=z
(0.5)

)
.

Consequently,

Dev(PY |Z) = 4Eq∼Unif[0,0.5]

[(
QP (0.5)−QP (q)

)2]
= 4EX∼PY |Z

[(
X −Median(PY |Z)

)2]
almost surely. Moreover, the median and mean coincide and hence, E

[
Dev(PY |Z)

]
=

4Var (Y | Z). The result now follows by Theorem C.14.

Since by Lemma 9, under the model class (20),
√
nβn

(
E [Var (Y | Z)]

)1/2
(1 + oP (1)) ≤ ISSn,

the conditional power for cross-bin matching further satisfies∣∣∣∣P {p ≤ α | Y,Z} − Φ

(
ÎSSn

σ
− Φ̄−1(α)

)∣∣∣∣ = oP (1),

as required.

C.5 Proof of propositions, corollaries and lemmas from Section 4

C.5.1 Proof of Proposition 6

Fix a distribution QX,Y,Z ∈ H ICI
0 . For any test function

ϕ : (X × R× R)n → [0, 1] such that sup
P∈HICI

0

EP [ϕ(X,Y,Z)] ≤ α,

by definition of total-variation distance it holds that

EPX,Y,Z
[ϕ(X,Y,Z)] ≤ EQX,Y,Z

[ϕ(X,Y,Z)] + dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
≤ α + dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
.

The result now follows since the the last inequality holds for any QX,Y,Z ∈ H ICI
0 .

C.5.2 Proof of Corollary 7

By Proposition 6, it is enough to argue that

inf
QX,Y,Z∈HICI

0

dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
≤ ISSn

2σ
.

Consider any µ′ ∈ CISO. Similar to (16), define a model QX,Y,Z as

X = µ′(Z) + ζ, (Y1, Z1), · · · , (Yn, Zn)
iid∼ PY,Z , ζ1, · · · , ζn

iid∼ N (0, σ2).

By definition, QX,Y,Z ∈ H ICI
0 and

dTV(PX,Y,Z , QX,Y,Z) ≤ EPY,Z

[
dTV

(
N
(
µ(Y,Z), σ2In

)
,N
(
µ′(Z), σ2In

)
| Y,Z

)]
=

EPY,Z
[∥µ(Y,Z)− µ′(Z)∥2]

2σ
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Since this is true for any µ′ ∈ CISO, then,

dTV(PX,Y,Z , QX,Y,Z) ≤ inf
µ′∈CISO

EPY,Z
[∥µ(Y,Z)− µ′(Z)∥2]

2σ
=

ISSn

2σ
.

This proves the result. □

C.5.3 Proof of Corollary 8

Similar to the proof of Corollary 7, it is enough to argue that

inf
QX,Y,Z∈HICI

0

dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
≤
(

1

ϵ(1− ϵ)

)1/2

ISSn.

Consider any µ′ ∈ CISO, and define the model QX,Y,Z ∈ H ICI
0 given by

Xi ∼ Ber(µ′(Zi)), (Y1, Z1), · · · , (Yn, Zn)
iid∼ PY,Z .

We note that dTV

(
P n
X,Y,Z , Q

n
X,Y,Z

)
can be computed as

EY,Z [dTV (Ber(µ(Y1, Z1))× · · · × Ber(µ(Yn, Zn)),Ber(µ
′(Z1))× · · · × Ber(µ′(Zn)))] ,

where the inner total variation term can be upper bounded using the Hellinger distance as

dTV (Ber(µ(Y1, Z1))× · · · × Ber(µ(Yn, Zn)),Ber(µ
′(Z1))× · · · × Ber(µ′(Zn)))

≤
√
2 ·H (Ber(µ(Y1, Z1))× · · · × Ber(µ(Yn, Zn)),Ber(µ

′(Z1))× · · · × Ber(µ′(Zn))) .

Further, H2(P1 × · · · × Pk, Q1 × · · ·Qk) ≤
∑k

i=1H
2(Pi, Qi) and thus by Lemma D.25, the

inner total variation can be further upper bounded by(
n∑

i=1

(µ(Yi, Zi)− µ′(Zi))
2

2µ(Yi, Zi)(1− µ(Yi, Zi))

)1/2

.

Finally, since µ(Y, Z) ∈ (ϵ, 1− ϵ) almost surely, the aforementioned term is upper bounded
by 1

ϵ(1−ϵ)
· ∥µ(Y,Z)− µ′(Z)∥22. Since this is true for any µ′ ∈ CISO, we have

dTV (Ber(µ(Y1, Z1))× · · · × Ber(µ(Yn, Zn)),Ber(µ
′(Z1))× · · · × Ber(µ′(Zn)))

≤
(

inf
µ′∈CISO

1

ϵ(1− ϵ)
· ∥µ(Y,Z)− µ′(Z)∥22

)1/2

=

(
1

ϵ(1− ϵ)
· ISS2

n

)1/2

,

which concludes the proof. □

C.5.4 Proof of Lemma 9

Firstly, under the model class (20) with E [Y ] = 0, we have that

ISSn

(1)

≤ EPY,Z
[∥µ(Y,Z)− µ0(Z)∥2]

= EPY,Z
[∥βnY∥2]

(2)

≤ βn

(
EPY,Z

[∑
i

Y 2
i

])1/2

=
√
nβn

(
Var (Y )

)1/2
,
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where the inequality (1) holds since µ0 ∈ CISO and (2) holds by Jensen’s inequality. Next, we
note that under the model class (20),

ISSn = inf
g∈CISO

EPY,Z
[∥µ(Y,Z)− g(Z)∥2]

≥ inf
g:R→R

EPY,Z
[∥µ(Y,Z)− g(Z)∥2]

= EPY,Z

[∥∥∥µ(Y,Z)− E [µ(Y,Z) | Z]
∥∥∥
2

]
= EPY,Z

[∥∥βn (Y − E [Y | Z]
)∥∥

2

]
.

Finally, since Y is a bounded random variable, we have

1

n
∥Y − E [Y | Z]

∥∥2
2
=

1

n

n∑
i=1

(Yi − E[Y | Zi])
2 = E [Var (Y | Z)] (1 + oP (1)).

Thus, we have ISSn ≥
√
nβn

(
E [Var (Y | Z)]

)1/2
(1 + oP (1)). □

C.6 An oracle matching—Isotonic median matching

A key step in Appendix C.2.1 is demonstrating (27) for a matching in Mn(Z). The purpose
of this section is to show that in the case where R is a totally ordered set, this is achievable
via a method that we refer to as isotonic median matching (IMM). Since R is totally ordered,
we write ≤ instead of ≤, and assume that Z1 ≤ · · · ≤ Zn. Given a1, . . . , am ∈ R, we define
their median by

Med(a1, . . . , am) =

{
a(k+1) if m = 2k + 1 for some k ∈ N0,
a(k)+a(k+1)

2
if m = 2k for some k ∈ N,

where a(1) ≤ · · · ≤ a(m) denote the order statistics of a1, . . . , am. Now given (Y,Z) and any
function γ : R× R → R, we consider the function γ̃ISO : R → R where

γ̃ISO(z) := max
j∈[n]:Zj≤z

min
zr∈R:zr≥z

Med
({
γ(Yℓ, Zℓ) : Zj ≤ Zℓ ≤ zr

})
. (40)

We claim that γ̃ISO ∈ CISO. To see this, observe that for z ≤ z′,

γ̃ISO(z) = max
j∈[n]:Zj≤z

min
zr∈R:zr≥z

Med
({
γ(Yℓ, Zℓ) : Zj ≤ Zℓ ≤ zr

})
≤ max

j∈[n]:Zj≤z
min

zr∈R:zr≥z′
Med

({
γ(Yℓ, Zℓ) : Zj ≤ Zℓ ≤ zr

})
≤ max

j∈[n]:Zj≤z′
min

zr∈R:zr≥z′
Med

({
γ(Yℓ, Zℓ) : Zj ≤ Zℓ ≤ zr

})
= γ̃ISO(z

′)

which proves the claim. Further, we note that γ̃ISO is a piecewise constant function in CISO,
i.e., there exist m ∈ [n+ 1], integers 1 = n1 < n2 < n3 < · · · < nm = n+ 1 and real numbers
r1 < . . . < rm−1 such that

γ̃ISO(z) =
m−1∑
i=1

ri 1
{
Zni

≤ z < Zni+1

}
, (41)

with the convention that Zn+1 = ∞. In fact, we can say more:
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Lemma C.16. In the representation (41), we have ri = Med
({
γ(Yℓ, Zℓ)

}
ni ≤ ℓ≤ni+1−1

)
for

i ∈ [m− 1]. Further, for any i ∈ [m− 1] and any integer k ∈ {ni, ni + 1, . . . , ni+1 − 1},

Med
({
γ(Yℓ, Zℓ)

}
ni≤ℓ≤k

)
≥ ri. (42)

Proof. Fix i ∈ [m− 1] and let z0 ∈ R be such that Zni−1 < z0 < Zni
. For any j ∈ [n] with

Zj ≤ z0, we have that

min
zr∈R:zr≥z0

Med
({
γ(Yℓ, Zℓ) : Zj ≤ Zℓ ≤ zr

})
= min

zr∈R:zr≥Zni

Med
({
γ(Yℓ, Zℓ) : Zj ≤ Zℓ ≤ zr

})
.

Since γ̃ISO(z0) = ri−1 < ri = γ̃ISO(Zni
), it follows that

γ̃ISO(Zni
) = max

{
min

zr∈R:zr≥Zni

Med
({
γ(Yℓ, Zℓ) : Zni

≤ Zℓ ≤ zr
})
, γ̃ISO(z0)

}
= min

k∈[n]:k≥ni

Med
({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k

})
. (43)

Let k̂ ∈ [n] denote the largest index k at which the minimum in (43) is attained. Since
γ̃ISO(Zni

) = γ̃ISO(Zni+1) = · · · = γ̃ISO(Zni+1−1), we have k̂ ≥ ni+1− 1. Now, it suffices to show
that

Med
({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k̂

})
= Med

({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ ni+1 − 1

})
. (44)

If i = m − 1, then k̂ = nm − 1 = n, so we may assume that i ∈ [m − 2]. Suppose for a
contradiction that (44) is not true, so k̂ ≥ ni+1. Now by (43), we have that

γ̃ISO(Zni+1
) = min

k∈[n]:k≥ni+1

Med
({
γ(Yℓ, Zℓ) : ni+1 ≤ ℓ ≤ k

})
≤ Med

({
γ(Yℓ, Zℓ) : ni+1 ≤ ℓ ≤ k̂

})
But since we have assumed that (44) is not true, we have

Med
({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k̂

})
< Med

({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ ni+1 − 1

})
,

and thus by Lemma D.26, we further have

γ̃ISO(Zni+1
) ≤ Med

({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k̂

})
.

However by (41), we also have

γ̃ISO(Zni+1
) > γ̃ISO(Zni

) = Med
({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k̂

})
,

which is a contradiction. This establishes (44) and completes the proof of the first part of
the result.

For the final part, fix any i ∈ [m− 1] and k0 ∈ {ni, ni + 1, . . . , ni+1 − 1}. Then by (43),

ri = γ̃ISO(Zni
) = min

k∈[n]:k≥ni

Med
({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k

})
≤ Med

({
γ(Yℓ, Zℓ) : ni ≤ ℓ ≤ k0

})
,

as required.

45



We are now in a position to define the isotonic median matching. For i ∈ [m− 1], define

Pi :=
{
t ∈ {ni, ni + 1, . . . , ni+1 − 1} : γ(Yt, Zt) > ri

}
,

Ni :=
{
t ∈ {ni, ni + 1, . . . , ni+1 − 1} : γ(Yt, Zt) < ri

}
.

Let us order the indices in Pi as t
+
i,1 < · · · < t+

i,n+
i

and the indices in Ni as t
−
i,1 < · · · < t−

i,n−
i

.

Defining Li := n+
i ∧ n−

i , we consider the collection of ordered pairs

Ci :=
{
(t+i,1, t

−
i,1), · · · , (t+i,Li

, t−i,Li
)
}
.

Finally, M̃(γ) :=
⋃m−1

i=1 Ci defines the isotonic median matching.

Lemma C.17. Suppose that the elements of {γ(Yℓ, Zℓ) : ℓ ∈ [n]} are all distinct. Then for
any i ∈ [m− 1], we have n+

i = n−
i and γ(Yℓ, Zℓ) = γ̃ISO(Zℓ) for all ℓ ∈ {ni, ni + 1, . . . , ni+1 −

1} \
(
Pi ∪Ni

)
. Moreover, M̃(γ) ∈ Mn(Z).

Proof. Fix i ∈ [m− 1]. When ni+1−ni is even, we have by the first part of Lemma C.16 that
n+
i = n−

i = (ni+1−ni)/2 and {ni, ni+1, . . . , ni+1−1}\
(
Pi∪Ni

)
= ∅. On the other hand, when

ni+1−ni is odd, we have n
+
i = n−

i = (ni+1−ni−1)/2 and {ni, ni+1, . . . , ni+1−1}\
(
Pi∪Ni

)
=:

{ℓ0} is a singleton set. Moreover, γ(Yℓ0 , Zℓ0) = γ̃ISO(Zℓ0) which proves the first two claims.

Since Z1 ≤ · · · ≤ Zn, in order to prove that M̃(γ) is a valid matching, it suffices to show that
t+i,ℓ < t−i,ℓ for any i ∈ [m − 1] and ℓ ∈ [Li]. To see this, noting that t+i,ℓ ̸= t−i,ℓ, suppose for a

contradiction that t+i,ℓ0 > t−i,ℓ0 for some i ∈ [m − 1] and some minimal ℓ0 ∈ [Li]. Since the

elements of {γ(Yℓ, Zℓ) : ℓ ∈ [n]} are all distinct, we have |{t ∈ Pi : t ≤ t−i,ℓ0}| = ℓ0 − 1 and

|{t ∈ Ni : t ≤ t−i,ℓ0}| = ℓ0, so

Med
({
γ(Yℓ, Zℓ)

}
ni≤ℓ≤t−i,ℓ0

)
< ri,

which contradicts (42).

The following key property of IMM ensures that when the PairSwap-ICI test is run with
the oracle matching and oracle choice of weights from (13), it has valid Type I error control
by Theorem 1 and moreover satisfies the power guarantees of Corollary ??.

Theorem C.18. Given (Y,Z) ∈ Rn × Rn, there exists γ : R× R → R for which, with the

corresponding isotonic median matching M̃(γ) ∈ Mn(Z), we have

∥∆µ+(Y,Z)∥2 ≥ ÎSSn.

Proof. Fix ϵ > 0. We can find γ : R × R → R such that the coordinates of γ(Y,Z) are

all distinct and ∥µ(Y,Z)− γ(Y,Z)∥2 < ϵ. Consider the IMM M̃(γ) := {(iℓ, jℓ)}ℓ∈L̃, where
M̃(γ) ∈ Mn(Z) by Lemma C.17. Furthermore by Lemma C.17 and (41), we have for any
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ℓ ∈ [L̃] that γ(Yiℓ , Ziℓ) > γ̃ISO(Ziℓ) = γ̃ISO(Zjℓ) > γ(Yjℓ , Zjℓ). Hence,

∥∆γ+(Y,Z)∥22 =
L̃∑

ℓ=1

(
γ(Yiℓ , Ziℓ)− γ(Yjℓ , Zjℓ)

)2
=

L̃∑
ℓ=1

(
γ(Yiℓ , Ziℓ)− γ̃ISO(Ziℓ) + γ̃ISO(Zjℓ)− γ(Yjℓ , Zjℓ)

)2
≥

L̃∑
ℓ=1

{(
γ(Yiℓ , Ziℓ)− γ̃ISO(Ziℓ)

)2
+
(
γ̃ISO(Zjℓ)− γ(Yjℓ , Zjℓ)

)2}
=

n∑
i=1

(
γ(Yi, Zi)− γ̃ISO(Zi)

)2
= ∥γ(Y,Z)− γ̃ISO(Z)∥22,

where the penultimate equality holds because γ(Yi, Zi) = γ̃ISO(Zi) for i ∈ [n]\{i1, j1, . . . , iL̃, jL̃},
by Lemma C.17. Next, we observe that

∥∆γ+(Y,Z)∥2 − ∥∆µ+(Y,Z)∥2 ≤ ∥∆γ+(Y,Z)−∆µ+(Y,Z)∥2
≤ ∥∆γ(Y,Z)−∆µ(Y,Z)∥2
≤

√
2∥γ(Y,Z)− µ(Y,Z)∥2 ≤

√
2ϵ,

and that by (17),

ÎSSn ≤ ∥µ(Y,Z)− γ̃ISO(Z)∥2 ≤ ∥γ(Y,Z)− γ̃ISO(Z)∥2 + ϵ.

Therefore,

∥∆µ+(Y,Z)∥2 +
√
2ϵ ≥ ∥∆γ+(Y,Z)∥2 ≥ ∥γ(Y,Z)− γ̃ISO(Z)∥2 ≥ ÎSSn − ϵ.

Since ϵ > 0 was arbitrary, the result follows.

C.7 Proof of lemmas from Appendices C.1—C.4

Lemma C.19. In the setting of Theorem C.12, let

Ω1 :=
{
∥w ◦∆X∥22 ≤ ρ22∥w∥22 · (1 + ϵ1,δ,U)

}
,

Ω2 :=
{
∥w ◦∆X∥22 ≥ ρ22∥w∥22 ·max{1 + ϵ1,δ,L, 0}

}
,

Ω3 :=
{
0.56∥w ◦∆X∥33 ≤ ∥w ◦∆X∥32 · ϵ2,δ

}
,

where ϵ1,δ,U , ϵ1,δ,L, ϵ2,δ are as defined in (24). Then for any δ ∈ [0, 1], we have P {Ω1 | Y,Z} ≥
1− 2δ, P {Ω2}Y,Z | ≥} 1− 2δ and P {Ω3 | Y,Z} ≥ 1− 2δ.

Proof. We have

∥w ◦∆X∥22 = ∥w ◦∆µ(Y,Z)∥22 + ∥w ◦∆ζ∥22 + 2 ·
(
w ◦∆µ(Y,Z)

)T
(w ◦∆ζ).
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Now, conditional on (Y,Z), both ∥w ◦∆ζ∥22, and (w ◦∆µ(Y,Z))T (w ◦∆ζ) are weighted
sums of independent and identically distributed random variables. Hence,

E
[
∥w ◦∆ζ∥22

∣∣ Y,Z] = ρ22

L∑
ℓ=1

w2
ℓ = ρ22∥w∥22,

E
[(
w ◦∆µ(Y,Z)

)T
(w ◦∆ζ)

∣∣∣ Y,Z] = 0

Var
(
∥w ◦∆ζ∥22

∣∣ Y,Z) = L∑
ℓ=1

w4
ℓVar

(
(∆ℓζ)

2
)

≤
L∑

ℓ=1

w4
ℓE
[
(∆ℓζ)

4
]
= ρ44∥w∥44,

Var
((

w ◦∆µ(Y,Z)
)T

(w ◦∆ζ)
∣∣∣ Y,Z) =

L∑
ℓ=1

w4
ℓ

(
∆ℓµ(Y,Z)

)2E [(∆ℓζ)
2
]

= ρ22∥w2 ◦∆µ(Y,Z)∥22.

By Chebychev’s inequality, for any δ ∈ [0,∞),

P
{∣∣∥w ◦∆ζ∥22 − ρ22∥w∥22

∣∣ ≥ ρ24
δ1/2

∥w∥24
∣∣∣∣ Y,Z} ≤ δ,

P
{∣∣(w ◦∆µ(Y,Z))T (w ◦∆ζ)

∣∣ ≥ ρ2
δ1/2

∥w2 ◦∆µ(Y,Z)∥2
∣∣∣ Y,Z} ≤ δ.

Hence,

1− 2δ ≤ P
{
∥w ◦∆X∥22 ≤ ∥w ◦∆µ(Y,Z)∥22 + ρ22∥w∥22 +

ρ24
δ1/2

∥w∥24

+
2ρ2
δ1/2

∥w2 ◦∆µ(Y,Z)∥2
∣∣∣∣ Y,Z}

≤ P {Ω1 | Y,Z} ,

where, in the final step, we have used the facts that ∥w∥24 ≤ ∥w∥∞ · ∥w∥2 and ∥w2 ◦
∆µ(Y,Z)∥2 ≤ ∥w ◦∆µ(Y,Z)∥∞ · ∥w∥2.

The lower bound on P {Ω2 | Y,Z} follows by a very similar argument.

For the final bound, observe that ∥w ◦ ∆ζ∥33 is also a weighted sum of independent and
identically distributed random variables, and has (conditional) mean and variance given by

E
[
∥w ◦∆ζ∥33

∣∣ Y,Z] = L∑
ℓ=1

|wℓ|3ρ33 = ρ33∥w∥33,

Var
(
∥w ◦∆ζ∥33

∣∣ Y,Z) = L∑
ℓ=1

w6
ℓVar

(
(|∆ℓζ|)3

)
≤

L∑
ℓ=1

w6
ℓE
[
(∆ℓζ)

6
]
= ∥∆w∥66ρ66.
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Thus, by the triangle inequality and Chebychev’s inequality,

1− δ ≤ P

{
∥w ◦∆X∥3 ≤ ∥w ◦∆µ(Y,Z)∥3 +

(
ρ33∥w∥33 +

ρ36
δ1/2

· ∥w∥36
)1/3

∣∣∣∣∣ Y,Z
}

≤ P
{
∥w ◦∆X∥3 ≤ ρ2∥w∥2

{(
∥w ◦∆µ(Y,Z)∥2

ρ2∥w∥2

)2/3(∥w ◦∆µ(Y,Z)∥∞
ρ2∥w∥2

)1/3

+

(
ρ33
ρ32

∥w∥∞
∥w∥2

+
ρ36

ρ32δ
1/2

· ∥w∥2∞
∥w∥22

)1/3} ∣∣∣∣ Y,Z}
≤ P {Ω2 ∩ Ω3 | Y,Z}+ P {Ωc

2 | Y,Z} ≤ P {Ω3 | Y,Z}+ 2δ,

as required.

Lemma C.20. Suppose we have i.i.d. samples (Y1, Z1), . . . , (Yn, Zn) from some distribution
PY,Z ∈ [−1, 1]×R, and π is any permutation of [n] such that Zπ(1) ≤ Zπ(2) ≤ . . . ≤ Zπ(n) are
ordered. Then, ∣∣∣∣∣ 1

n/2

⌊n/2⌋∑
i=1

(Yπ(2i−1) − Yπ(2i))
2
+ − E [Var (Y | Z)]

∣∣∣∣∣ = oP (1).

Proof. Consider any joint distribution PY,Z on [−1, 1]× R. We write PZ and PY |Z(· | z) for
the distributions of Z and Y given Z = z, and we write F−1

Z and F−1
Y |Z(· | z) to denote the

generalized inverse for PZ and PY |Z(· | z) respectively. Without loss of generality we can also
assume that π is the identity permutation, i.e., Z1 ≤ Z2 ≤ . . . ≤ Zn are ordered and Yi is the
Y value corresponding to Zi for any i ∈ [n].

Step 1: concentration, conditional on Z. Conditioned on Z = (Z1, Z2, . . . , Zn),
{(Y2i−1 − Y2i)}i∈⌊n/2⌋ is a collection of independent and uniformly bounded random vari-
ables. Thus, by weak law of large numbers,∣∣∣∣∣ 1

n/2

⌊n/2⌋∑
i=1

(Y2i−1 − Y2i)
2
+ − 1

n/2

⌊n/2⌋∑
i=1

E
[
(Y2i−1 − Y2i)

2
+

∣∣ Z]∣∣∣∣∣ = oP (1).

Hence, it suffices to show that∣∣∣∣∣ 1

n/2

⌊n/2⌋∑
i=1

E
[
(Y2i−1 − Y2i)

2
+

∣∣ Z]− E [Var (Y | Z)]

∣∣∣∣∣ = oP (1),

Step 2: constructing a coupling. Consider {(U2i−1, U2i)}i∈⌊n/2⌋
iid∼ Uniform[0, 1]. Without

loss of generality, we may take

Y2i−1 = F−1
Y |Z
(
U2i−1 | Z2i−1

)
, Y2i = F−1

Y |Z
(
U2i | Z2i

)
.

We also define for i ∈ ⌊n/2⌋

Y ′
2i−1 = F−1

Y |Z
(
U2i−1 | Z2i

)
, Y ′

2i = F−1
Y |Z
(
U2i | Z2i−1

)
.
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Conditioned on Z, Y ′
2i−1

d
= Y2i and Y ′

2i
d
= Y2i−1. Since t → t2+ is 4-Lipschitz on [−2, 2], it

follows that∣∣∣2(Y2i−1 − Y2i)
2
+−
[
(Y ′

2i−1 − Y2i)
2
+ + (Y2i−1 − Y ′

2i)
2
+

]∣∣∣
≤
∣∣(Y2i−1 − Y2i)

2
+ − (Y ′

2i−1 − Y2i)
2
+

∣∣+ ∣∣(Y2i−1 − Y2i)
2
+ − (Y2i−1 − Y ′

2i)
2
+

∣∣
≤ 4
(
|Y2i−1 − Y ′

2i−1|+ |Y2i − Y ′
2i|
)
.

Therefore, we have∣∣∣∣ 1

n/2

⌊n/2⌋∑
i=1

E
[
(Y2i−1 − Y2i)

2
+

∣∣ Z]− 1

n

⌊n/2⌋∑
i=1

E
[
(Y ′

2i−1 − Y2i)
2
+ + (Y2i−1 − Y ′

2i)
2
+

∣∣ Z]∣∣∣∣
≤ 4

n

n∑
i=1

E
[
|Y2i−1 − Y ′

2i−1|+ |Y2i − Y ′
2i|
∣∣ Z] .

Moreover, by construction

E
[
|Y2i−1 − Y ′

2i−1|
∣∣ Z] = E [|Y2i − Y ′

2i| | Z] = dW1

(
PY |Z(· | Z2i−1), PY |Z(· | Z2i)

)
,

where dW1(·, ·) denotes the 1-Wasserstein distance. We also write σ2
z := Var (Y | Z = z) and

note that

E
[
(Y2i−1 − Y ′

2i)
2
+

∣∣ Z] = σ2
Z2i−1

and E
[
(Y2i − Y ′

2i−1)
2
+

∣∣ Z] = σ2
Z2i
.

Hence, it follows that∣∣∣∣ 1

n/2

⌊n/2⌋∑
i=1

E
[
(Y2i−1 − Y2i)

2
+

∣∣ Z]− 1

n

⌊n/2⌋∑
i=1

(
σ2
Z2i−1

+ σ2
Z2i

)∣∣∣∣
≤ 8

n

⌊n/2⌋∑
i=1

dW1

(
PY |Z(· | Z2i−1), PY |Z(· | Z2i)

)
.

Step 3: another concentration step. Since Y ∈ [−1, 1],∣∣∣∣ 1n
⌊n/2⌋∑
i=1

(
σ2
Z2i−1

+ σ2
Z2i

)
− 1

n

n∑
i=1

σ2
Zi

∣∣∣∣ ≤ 4

n
.

Furthermore, σ2Z1, . . . , σ
2
Zn

are independent and uniformly bounded random variables. Thus,
by weak law of large numbers,∣∣∣∣ 1n

n∑
i=1

σ2
Zi

− E [Var (Y | Z)]
∣∣∣∣ = oP (1).

Hence, so far we have established that∣∣∣∣∣ 1

n/2

⌊n/2⌋∑
i=1

E
[
(Y2i−1 − Y2i)

2
+

∣∣ Z]−E [Var (Y | Z)]

∣∣∣∣∣ ≤ 8

n

⌊n/2⌋∑
i=1

dW1

(
PY |Z(· | Z2i−1), PY |Z(· | Z2i)

)
+oP (1).
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Step 4: bounding the Wasserstein distance by a TV distance. Fix N ∈ N, and
define the random variable Ỹ := (1/N)⌊NY ⌋, which essentially amounts to rounding off Y
to the closest point to the left of Y on the grid (N)/N .

For any i ∈ ⌊n/2⌋,∣∣dW1

(
PY |Z(· | Z2i−1)PY |Z(· | Z2i)

)
− dW1

(
PỸ |Z(· | Z2i−1), PỸ |Z(· | Z2i)

)∣∣
≤ dW1

(
PY |Z(· | Z2i−1), PỸ |Z(· | Z2i−1)

)
+ dW1

(
PY |Z(· | Z2i), PỸ |Z(· | Z2i)

)
≤ 2/N,

where the last inequality follows by noting that |Y − Ỹ | ≤ 1/N . Furthermore, Ỹ ∈ [−1, 1]
and thus, by Villani (2009, Theorem 6.15)

dW1

(
PỸ |Z(· | Z2i−1), PỸ |Z(· | Z2i)

)
≤ 2 dTV

(
PỸ |Z(· | Z2i−1), PỸ |Z(· | Z2i)

)
≤ 2

N∑
k=−N

∣∣PỸ |Z(k/N | Z2i−1)− PỸ |Z(k/N | Z2i)
∣∣.

Writing fk(Z1, . . . , Zn) :=
2

n−1

∑n−1
i=1

∣∣PỸ |Z(k/N | Zi)−PỸ |Z(k/N | Zi+1)
∣∣ for any k ∈ [−N,N ],

we have that

1

n

⌊n/2⌋∑
i=1

dW1

(
PY |Z(· | Z2i−1), PY |Z(· | Z2i)

)
≤ 1

N
+

2

n

⌊n/2⌋∑
i=1

N∑
k=−N

∣∣PỸ |Z(k/N | Z2i−1)− PỸ |Z(k/N | Z2i)
∣∣

≤ 1

N
+
n− 1

n

N∑
k=−N

fk(Z1, . . . , Zn).

Step 5: controlling the total-variation term. Fix K ∈ [−N,N ]. Observe that if we
resample a single Zi (and write (Z ′

1, . . . , Z
′
n) to denote this new sample), the perturbation in

fk is given by ∣∣fk(Z1, . . . , Zn)− fk(Z
′
1, . . . , Z

′
n)
∣∣ ≤ 2

n
· 2 =

4

n
.

This follows by noting that the resampled Z ′
i can alter at most two of the summands.

Now, let Z̃1, Z̃2, . . . be an infinite sequence of i.i.d. copies of Z. For each n ≥ 2 and each
1 ≤ i ≤ n, let Z̃n,i be the Euclidean-nearest neighbour of Z̃i among {Z̃j : 1 ≤ j ≤ n, j ̸=
i and Z̃j ≥ Z̃i}. Now, observe that for any i ∈ [n],

E
[∣∣PỸ |Z(k/N | Zi)− PỸ |Z(k/N | Zi+1)

∣∣] = EPZ

[
|PỸ |Z(k/N | Z̃1)− PỸ |Z(k/N | Z̃n,1)

∣∣] .
Since Z1, . . . , Zn are independent, by McDiarmid’s inequality, for any δ > 0∣∣fk(Z1, . . . , Zn)− 2EPZ

[
|PỸ |Z(k/N | Z̃1)− PỸ |Z(k/N | Z̃n,1)

∣∣] ∣∣ = oP (1). (45)

Now, we claim that

|PỸ |Z(k/N | Z̃1)− PỸ |Z(k/N | Z̃n,1)
∣∣ = oP (1). (46)
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To prove this claim, fix an ϵ > 0 and a δ > 0. By Lusin’s theorem, there exists a compactly
supported continuous function gk such that

PZ̃∼PZ

{
PỸ |Z(k/N | Z̃) ̸= gk(Z̃)

}
< ϵ.

Now, P
{∣∣PỸ |Z(k/N | Z̃1)− PỸ |Z(k/N | Z̃n,1)

∣∣ ≥ δ
}
is upper bounded by

P
{
|gk(Z̃1)− gk(Z̃n,1)| ≥ δ

}
+ P

{
PỸ |Z(k/N | Z̃1) ̸= gk(Z̃1)

}
+ P

{
PỸ |Z(k/N | Z̃n,1) ̸= gk(Z̃n,1)

}
.

By construction, P
{
PỸ |Z

(
k/N | Z̃1

)
̸= gk(Z̃1)

}
≤ ϵ and by Lemma D.27, there exists an

universal constant C0 such that

P
{
PỸ |Z(k/N | Z̃n,1) ̸= gk(Z̃n,1)

}
≤ C0 P

{
PỸ |Z(k/N | Z̃1) ̸= gk(Z̃1)

}
≤ C0ϵ.

Moreover, by continuity of gk and by Lemma D.27,

lim
n→∞

P {|gk(Z)− gk(ZRN)| ≥ δ} = 0.

Thus, we have that

lim
n→∞

P
{
PỸ |Z

(
k/N | Z

)
− PỸ |Z

(
k/N | ZRN

)
| ≥ δ

}
≤ ϵ(1 + C0).

Since ϵ, δ was arbitrary, (46) holds.

Since the sequence of random variables in (46) is uniformly bounded, it further implies that

EPZ

[
|PỸ |Z(k/N | Z̃1)− PỸ |Z(k/N | Z̃n,1)

∣∣] = oP (1).

Since the conclusion above holds for any k ∈ [−N,N ], we finally have that

1

n

⌊n/2⌋∑
i=1

dW1

(
PY |Z(· | Z2i−1), PY |Z(· | Z2i)

)
≤ 1

N
+
n− 1

n

N∑
k=−N

fk(Z1, . . . , Zn) ≤
1

N
+ oP (1).

But, N was arbitrary to start with. Thus, it follows that

1

n

⌊n/2⌋∑
i=1

dW1

(
PY |Z(· | Z2i−1), PY |Z(· | Z2i)

)
= oP (1),

which concludes the proof.

Lemma C.21. For cross bin matching under any distribution PY,Z, it holds that∣∣∣∣∣ 1

n/2
∥∆Y+∥22 − E

[
Dev(PY |Z)

]∣∣∣∣∣ ≤ C
(
LW ∨ 1

)( 1√
K

+
1√
n/K

+

√
log(4/δ)

n

)
where C is a universal constant.
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Proof. Let P(Y,Z) be a joint distribution on (Y, Z) ∈ R × R. Write PZ and PY |Z for the
marginal and conditional distributions. Define also F−1

Z and F−1
Y |Z(· | z) as the generalized

inverse CDF for PZ and PY |Z(· | z).

We define some notation. Let Ak ⊆ [n] denote the “kth bin”—that is, if we sort Z values from
smallest to largest, Ak corresponds to the indices appearing in positions (k − 1)m+ 1, . . . ,m
in the sorted list. If we write Yk,(1) ≥ · · · ≥ Yk,(m) as the sorted values of Y in the kth bin
Ak = {(k − 1)m+ 1, . . . , km}, then the cross-bin matching returns

D̂evcross-bin =
K−1∑
k=1

⌊m/2⌋∑
i=1

(Yk,(i) − Yk+1,(m+1−i))
2
+.

Step 1: rewriting with a Lipschitz function. Define a function f : [−1, 1]m×[−1, 1]m →
R as

f(y, y′) =

⌊m/2⌋∑
i=1

(y(i) − y′(m+1−i))
2
+

where y(1) ≥ · · · ≥ y(m) and y
′
(1) ≥ · · · ≥ y′(m) denote the sorted values of y and of y′. Note

that, by construction,

D̂evcross-bin =
K−1∑
k=1

f(YAk
, YAk+1

).

This function satisfies several key properties:

Lemma C.22. The function f satisfies the Lipschitz property

|f(y, y′)− f(ỹ, ỹ′)| ≤ 4∥y − ỹ∥1 + 4∥y′ − ỹ′∥1.

Lemma C.23. Let Q be any distribution on R, and let A = (A1, . . . , Am) ∼ Qm and
B = (B1, . . . , Bm) ∼ Qm. Then∣∣∣∣ 1

m/2
E [f(A,B)]−Dev(Q)

∣∣∣∣ ≤ C√
m

for a universal constant C.

Step 2: concentration. First, observe that if we resample a single Yi value (and write

(Y ′
1 , . . . , Y

′
n) to denote this new sample), the perturbation in D̂evcross-bin is given by∣∣∣∣∣

K−1∑
k=1

f(YAk
, YAk+1

)−
K−1∑
k=1

f(Y ′
Ak
, Y ′

Ak+1
)

∣∣∣∣∣ ≤
K−1∑
k=1

(
4∥YAk

− Y ′
Ak
∥1 + 4∥YAk+1

− Y ′
Ak+1

∥1
)
≤ 16

where the last step holds since, for each k, ∥YAk
− Y ′

Ak
∥1 ≤ 2 · 1i∈Ak

and similarly ∥YAk+1
−

Y ′
Ak+1

∥1 ≤ 2 · 1i∈Ak+1
. Therefore by McDiarmid’s inequality, since the Yi’s are independent

conditional on Z1, . . . , Zn, with probability ≥ 1− δ/2 it holds that∣∣∣D̂evcross-bin − E
[
D̂evcross-bin

∣∣∣ Z1, . . . , Zn

]∣∣∣ ≤ 8
√

2n log(4/δ).
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Step 3: an equivalent way to sample the data. Now let V1, . . . , Vn, U1, . . . , Un
iid∼

Unif[0, 1]. First we define Zi = F−1
Z (Vi), so that we have Z1, . . . , Zn

iid∼ PZ . Then we define

Yi = F−1
Y |Z(Ui | Zi)

for each i—this is equivalent to sampling (Yi, Zi)
iid∼ P(Y,Z).

Step 4: replace the Y values with oracle samples. Now let 0 < u∗1 ≤ · · · ≤ u∗K−1 < 1
be any values and let z∗k = F−1

Z (u∗k). For each i ∈ Ak, define

Ỹi = F−1
Y |Z(Ui | z∗k)

and for each i ∈ Ak+1, define
Ỹ ′
i = F−1

Y |Z(Ui | z∗k).
Now define

D̃evcross-bin =
K−1∑
k=1

f(ỸAk
, Ỹ ′

Ak+1
),

so that ∣∣∣D̂evcross-bin − D̃evcross-bin

∣∣∣ ≤ K−1∑
k=1

∣∣∣f(YAk
, YAk+1

)− f(ỸAk
, Ỹ ′

Ak+1
)
∣∣∣ .

By Lemma C.22, for each k,∣∣∣f(YAk
, YAk+1

)− f(ỸAk
, Ỹ ′

Ak+1
)
∣∣∣ ≤ 4∥YAk

− ỸAk
∥1 + 4∥YAk+1

− Ỹ ′
Ak+1

∥1.

Taking expected values, then,

E
[∣∣∣f(YAk

, YAk+1
)− f(ỸAk

, Ỹ ′
Ak+1

)
∣∣∣ ∣∣∣ Z1, . . . , Zn

]
≤ E

[
4∥YAk

− ỸAk
∥1 + 4∥YAk+1

− Ỹ ′
Ak+1

∥1
∣∣∣ Z1, . . . , Zn

]
.

Now we calculate an upper bound. For any k = 1, . . . , K − 1 and any i ∈ Ak,

E
[
|Yi − Ỹi|

∣∣∣ Z1, . . . , Zn

]
= dW(PY |Z(· | Zi), PY |Z(· | z∗k)),

by definition of the 1-Wasserstein distance, and by construction of Yi and Ỹi. Similarly for
i ∈ Ak+1,

E
[
|Yi − Ỹ ′

i |
∣∣∣ Z1, . . . , Zn

]
= dW(PY |Z(· | Zi), PY |Z(· | z∗k)).

And, since we have made a smoothness assumption on the conditional distributions, since
Zi = F−1

Z (Vi) and z
∗
k = F−1

Z (u∗k), for each i and each k we have

dW(PY |Z(· | Zi), PY |Z(· | z∗k)) ≤ LW |Vi − u∗k|.

Therefore,

E
[∣∣∣f(YAk

, YAk+1
)− f(ỸAk

, Ỹ ′
Ak+1

)
∣∣∣ ∣∣∣ Z1, . . . , Zn

]
≤ 4LW

∑
i∈Ak∪Ak+1

|Vi − u∗k|.
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We therefore have∣∣∣E [D̂evcross-bin ∣∣∣ Z1, . . . , Zn

]
− E

[
D̃evcross-bin

∣∣∣ Z1, . . . , Zn

]∣∣∣
≤ E

[∣∣∣D̃evcross-bin − D̂evcross-bin

∣∣∣ ∣∣∣ Z1, . . . , Zn

]
≤ 4LW

K−1∑
k=1

∑
i∈Ak∪Ak+1

|Vi − u∗k|.

Next, by Lemma C.23, since ỸAk
and Ỹ ′

Ak+1
each represent m i.i.d. draws from PY |Z(· | z∗k)

for each k, we have∣∣∣∣ 1

m/2
E
[
f(ỸAk

, Ỹ ′
Ak+1

)
∣∣∣ Z1, . . . , Zn

]
−Dev(PY |Z(· | z∗k)

∣∣∣∣ ≤ C√
m
.

Therefore,∣∣∣∣∣E [D̃evcross-bin ∣∣∣ Z1, . . . , Zn

]
− m

2

K−1∑
k=1

Dev(PY |Z(· | z∗k)

∣∣∣∣∣ ≤ m

2
· (K − 1) · C√

m
.

Combined with the calculations above, then,∣∣∣∣∣E [D̂evcross-bin ∣∣∣ Z1, . . . , Zn

]
− m

2

K−1∑
k=1

Dev(PY |Z(· | z∗k)

∣∣∣∣∣
≤ 4LW

K−1∑
k=1

∑
i∈Ak∪Ak+1

|Vi − u∗k|+
m

2
· (K − 1) · C√

m
.

Step 5: another Wasserstein distance. By definition of the bins Ak (i.e., these bins
reflect the ordering of the Vi’s), we can rewrite

K−1∑
k=1

∑
i∈Ak

|Vi − u∗k| =
K−1∑
k=1

km∑
i=(k−1)m+1

|V(i) − u∗k|.

Since u∗1 ≤ · · · ≤ u∗K−1, by definition of the 1-Wasserstein distance, we have

1

m(K − 1)

K−1∑
k=1

km∑
i=(k−1)m+1

|V(i) − u∗k| = dW

(
P̂

(1)
V , P̂u∗

)
,

where P̂
(1)
V is the empirical distribution of V(1), . . . , V((K−1)m), and P̂u∗ is the empirical distri-

bution of u∗1, . . . , u
∗
K−1. By the triangle inequality,

dW

(
P̂

(1)
V , P̂u∗

)
≤ dW

(
P̂V ,Unif[0, 1]

)
+ dW

(
P̂u∗ ,Unif[0, 1]

)
+ dW

(
P̂

(1)
V , P̂V

)
≤ dW

(
P̂V ,Unif[0, 1]

)
+ dW

(
P̂u∗ ,Unif[0, 1]

)
+

2m

n
,
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where P̂V is the empirical distribution of V1, . . . , Vn (note that the last inequality holds since
V(1), . . . , V((K−1)m) is a subset of the list V1, . . . , Vn, containing all but n− (K − 1)m ≤ 2m
many entries). Therefore,

K−1∑
k=1

∑
i∈Ak

|Vi − u∗k| ≤ m(K − 1)
(
dW

(
P̂V ,Unif[0, 1]

)
+ dW

(
P̂u∗ ,Unif[0, 1]

))
+ 2m.

By an identical argument the same bound holds for
∑K−1

k=1

∑
i∈Ak+1

|Vi − u∗k|. Therefore,
combining with the results of the previous step,∣∣∣∣∣E [D̂evcross-bin ∣∣∣ Z1, . . . , Zn

]
− m

2

K−1∑
k=1

Dev(PY |Z(· | z∗k))

∣∣∣∣∣
≤ 4LWm(K − 1)

(
dW

(
P̂V ,Unif[0, 1]

)
+ dW

(
P̂u∗ ,Unif[0, 1]

))
+8LWm+

m

2
· (K − 1) · C√

m
.

Step 6: averaging over the reference values. The above calculations hold for any fixed

0 < u∗1 ≤ . . . u∗K−1 < 1. Now we will make these random: let U∗
1 , . . . , U

∗
K−1

iid∼ Unif[0, 1] and
let U∗

(1) ≤ · · · ≤ U∗
(K−1) be the order statistics. And, let Z

∗
k = F−1

Z (U∗
k ), with Z

∗
(k) = F−1

Z (U∗
(k))

being the order statistics. Since Z∗
k ∼ PZ for each k, we have

E

[
K−1∑
k=1

Dev(PY |Z(· | Z∗
(k)))

]
= E

[
K−1∑
k=1

Dev(PY |Z(· | Z∗
k))

]
= (K − 1)E

[
Dev(PY |Z)

]
.

Combining with the previous step, and applying Jensen’s inequality when taking expectation
over the distribution of the Z∗

k ’s (while conditioning on Z1, . . . , Zn), we then have∣∣∣E [D̂evcross-bin ∣∣∣ Z1, . . . , Zn

]
− m

2
· (K − 1)E

[
Dev(PY |Z)

]∣∣∣
≤ 4LWm(K − 1)dW

(
P̂V ,Unif[0, 1]

)
+ 8LWm+

m

2
· (K − 1) · C√

m

+ 4LWnE
[
dW

(
P̂U∗ ,Unif[0, 1]

)]
,

where P̂U∗ is the empirical distribution of U∗
1 , . . . , U

∗
K−1. Since n− 2m ≤ m(K − 1) ≤ n, and

E
[
Dev(PY |Z)

]
∈ [0, 4], then,∣∣∣E [D̂evcross-bin ∣∣∣ Z1, . . . , Zn

]
− n

2
E
[
Dev(PY |Z)

]∣∣∣
≤ 4LWm(K − 1)dW

(
P̂V ,Unif[0, 1]

)
+ (8LW + 4)m+

m

2
· (K − 1) · C√

m

+ 4LWm(K − 1)E
[
dW

(
P̂U∗ ,Unif[0, 1]

)]
.

By bounds on the empirical 1-Wasserstein distance from Lei (2020, Corollary 5.2.), since

Vi
iid∼ Unif[0, 1] and U∗

k
iid∼ Unif[0, 1], we have

E
[
dW

(
P̂V ,Unif[0, 1]

)]
≤ C ′n−1/2, E

[
dW

(
P̂U∗ ,Unif[0, 1]

)]
≤ C ′(K − 1)−1/2
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for a universal constant C ′, and so∣∣∣E [D̂evcross-bin ∣∣∣ Z1, . . . , Zn

]
− n

2
E
[
Dev(PY |Z)

]∣∣∣
≤ 4LWm(K − 1)

(
dW

(
P̂V ,Unif[0, 1]

)
− E

[
dW

(
P̂V ,Unif[0, 1]

)])
+ 4CLW

√
n+ (8LW + 4)m+

m

2
· (K − 1) · C√

m
+ 4C ′LWm

√
K − 1.

Step 7: another concentration step. Since V1, . . . , Vn are i.i.d., and the quantity
dW
(
P̂V ,Unif[0, 1]

)
can change value by at most 2

n
if we resample one value Vi, by McDiarmid’s

inequality, with probability ≥ 1− δ/2,∣∣∣dW

(
P̂V ,Unif[0, 1]

)
− E

[
dW

(
P̂V ,Unif[0, 1]

)]∣∣∣ ≤√2 log(4/δ)

n
.

Step 8: combining everything. From all the steps above, with probability ≥ 1− δ,∣∣∣D̂evcross-bin − n

2
E
[
Dev(PY |Z)

]∣∣∣
≤ 8
√

2n log(4/δ) + 4LWm(K − 1) ·
√

2 log(4/δ)

n

+ 4CLW

√
n+ (8LW + 4)m+

m

2
· (K − 1) · C√

m
+ 4C ′LWm

√
K − 1.

Letting C now denote a different universal constant, we have the final result

D Auxiliary lemmas

Lemma D.24. It holds that deterministically, for any α ∈ [0, 1],

1

2L

∑
s∈{±1}L

1 {p(xs) ≤ α} ≤ α,

where p(·) is as defined in (7).

Proof. Consider a bijection σ : [2L] → {−1, 1}L such that T (xσ(1)) ≥ . . . ≥ T (xσ(2L)), and let

r ∈ {0, 1, . . . , 2L} be such that α ∈
[
r/2L, (r+1)/2L

)
. Then, since

∑2L

k=1 1
{
T (xσ(k)) ≥ T (xσ(j))

}
∈

[2L] for each j ∈ [2L], we have deterministically that

1

2L

∑
s∈{±1}L

1 {p(xs) ≤ α} =
1

2L

2L∑
j=1

1

 1

2L

2L∑
k=1

1
{
T (xσ(k)) ≥ T (xσ(j))

}
≤ α


=

1

2L

2L∑
j=1

1


2L∑
k=1

1
{
T (xσ(k)) ≥ T (xσ(j))

}
≤ r


≤ 1

2L

2L∑
j=1

1


2L∑
k=1

1 {k ≤ j} ≤ r

 =
1

2L

2L∑
j=1

1 {j ≤ r} =
r

2L
≤ α.

57



Lemma D.25. For any p, q ∈ (0, 1), it holds that

H2
(
Ber(p),Ber(q)

)
≤ min

{
(p− q)2

2p(1− p)
,
(p− q)2

2q(1− q)

}
.

Proof. We note that for any p, q ∈ (0, 1),

H2
(
Ber(p),Ber(q)

)
=

1

2

[
(
√
p−√

q)2 + (
√

1− p−
√
1− q)2

]
=

1

2

[
(p− q)2

(
√
p+

√
q)2

+
(p− q)2

(
√
1− p+

√
1− q)2

]
≤ 1

2

[
(p− q)2

p+ q
+

(p− q)2

(1− p) + (1− q)

]
≤ 1

2

[
(p− q)2

p
+

(p− q)2

(1− p)

]
≤ (p− q)2

2p(1− p)
.

By symmetry, it is also bounded by (p− q)2/
(
2q(1− q)

)
, which proves the lemma.

Lemma D.26. If S1 and S2 are finite subsets of R with Med(S1 ∪ S2) < Med(S1), then
Med(S1 ∪ S2) ≥ Med(S2).

Proof. Let S1 = {a1, . . . , am} with a1 ≤ · · · ≤ am, S2 = {b1, . . . , bn} with b1 ≤ · · · ≤ bn, and
S1 ∪ S2 = {c1, . . . , cm+n} with c1 ≤ · · · ≤ cm+n.

We first claim that Med(S2) < Med(S1). To see this, observe that∣∣{k ∈ [m+ n] : ck ≤ Med(S1 ∪ S2)}
∣∣ ≤ ∣∣{k ∈ [m+ n] : ck < Med(S1)}

∣∣
=
∣∣{i ∈ [m] : ai < Med(S1)}

∣∣+ ∣∣{j ∈ [n] : bj < Med(S1)}
∣∣.

Recalling that
∣∣{j ∈ [n] : bj < Med(S2)}

∣∣ ≤ n/2, there are four cases to consider:

Case 1: m and n both are odd. In this case,∣∣{k ∈ [m+n] : ck ≤ Med(S1 ∪S2)}
∣∣ ≥ (m+n)/2,

∣∣{i ∈ [m] : ai < Med(S1)}
∣∣ ≤ (m− 1)/2,

and hence
∣∣{j ∈ [n] : bj < Med(S1)}

∣∣ ≥ (n+ 1)/2, which proves the claim.

Case 2: m is odd, and n is even. In this case,∣∣{k ∈ [m+n] : ck ≤ Med(S1∪S2)}
∣∣ ≥ (m+n+1)/2,

∣∣{i ∈ [m] : ai < Med(S1)}
∣∣ ≤ (m−1)/2,

and hence
∣∣{j ∈ [n] : bj < Med(S1)}

∣∣ ≥ (n+ 2)/2, which proves the claim.

Case 3: m is even, and n is odd. In this case,∣∣{k ∈ [m+ n] : ck ≤ Med(S1 ∪ S2)}
∣∣ ≥ (m+ n+ 1)/2,

∣∣{i ∈ [m] : ai < Med(S1)}
∣∣ ≤ m/2,

and hence
∣∣{j ∈ [n] : bj < Med(S1)}

∣∣ ≥ (n+ 1)/2, which proves the claim.
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Case 4: m and n both are even. By definition,

Med(S1) =
am/2 + am/2+1

2
, Med(S2) =

bn/2 + bn/2+1

2

and Med(S1 ∪ S2) =
cm/2+n/2 + cm/2+n/2+1

2
.

Now, if am/2 = am/2+1, then∣∣{k ∈ [m+ n] : ck ≤ Med(S1 ∪ S2)}
∣∣ ≥ (m+ n)/2,

∣∣{i ∈ [m] : ai < Med(S1)}
∣∣ ≤ m/2− 1,

and thus,
∣∣{j ∈ [n] : bj < Med(S1)}

∣∣ ≥ n/2 + 1, which proves the claim.

Otherwise, when am/2 < am/2+1∣∣{k ∈ [m+ n] : ck ≤ Med(S1 ∪ S2)}
∣∣ ≥ (m+ n)/2,

∣∣{i ∈ [m] : ai < Med(S1)}
∣∣ = m/2,

and hence,
∣∣{j ∈ [n] : bj < Med(S1)}

∣∣ ≥ n/2 and bn/2 < Med(S1). Now again, there are four
cases to consider.

(i) If bn/2 ≤ am/2 < am/2+1 ≤ bn/2+1, then Med(S1 ∪ S2) =
am/2+am/2+1

2
= Med(S1) which is

a contradiction.

(ii) If am/2 < bn/2 ≤ am/2+1 ≤ bn/2+1, then Med(S1 ∪ S2) =
bn/2+am/2+1

2
>

am/2+am/2+1

2
=

Med(S1) which is a contradiction.

(iii) If am/2 < bn/2 ≤ bn/2+1 ≤ am/2+1, then Med(S1) > Med(S1 ∪ S2) =
bn/2+bn/2+1

2
=

Med(S2).

(iv) If bn/2 ≤ am/2 ≤ bn/2+1 < am/2+1, then Med(S1) =
am/2+am/2+1

2
>

bn/2+bn/2+1

2
= Med(S2).

This establishes the claim that Med(S2) < Med(S1). If we had Med(S1 ∪ S2) < Med(S2),
then by the same argument as above, we could conclude that Med(S1) < Med(S2) which is a
contradiction. This proves the result.

Proof of Lemma C.22. First, for each i = 1, . . . , ⌊m/2⌋, since t 7→ (t)2+ is 4-Lipschitz on
t ∈ [−2, 2],∣∣(y(i) − y′(m+1−i))

2
+ − (ỹ(i) − ỹ′(m+1−i))

2
+

∣∣ ≤ 4|y(i) − ỹ(i)|+ 4|y′(m+1−i) − ỹ′(m+1−i)|.

Therefore,

|f(y, y′)− f(ỹ, ỹ′)| ≤ 4

⌊m/2⌋∑
i=1

|y(i) − ỹ(i)|+ 4

⌊m/2⌋∑
i=1

|y′(m+1−i) − ỹ′(m+1−i)|.

Writing y() = (y(1), . . . , y(m)) as the sorted vector, and same for y′(), ỹ(), and ỹ
′
(), then,

|f(y, y′)− f(ỹ, ỹ′)| ≤ 4∥y() − ỹ()∥1 + 4∥y′() − ỹ′()∥1.

Finally, it holds that
∥y() − ỹ()∥1 ≤ ∥y − ỹ∥1

by an ℓ1 version of the rearrangement inequality, and similarly for y′, ỹ′. This completes the
proof.
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Proof of Lemma C.23. First let A(1) ≥ · · · ≥ A(m) and B(1) ≥ · · · ≥ B(m) be the order
statistics, and write A() = (A(1), . . . , A(m)) and B() = (B(1), . . . , B(m)) for the sorted vectors.
Then

f(A,B) = f(A(), B())

since f(y, y′) is invariant to permutations of y, and invariant to permutations of y′.

Next, let F−1
Q be a generalized CDF for Q. Let U1, . . . , Um

iid∼ Unif[0, 1], so that we can

equivalently define Ai = F−1
Q (Ui) for i = 1, . . . ,m. Define A′

i = F−1
Q (1 − Ui), and let A′

()

denote the sorted vector as before. Then

|f(A,B)− f(A,A′)| =
∣∣f(A(), B())− f(A(), A

′
())
∣∣ ≤ 4∥A′

() −B()∥1

by Lemma C.22, and so applying Jensen’s inequality,∣∣E [f(A(), B())
]
− E

[
f(A(), A

′
()

]∣∣ ≤ 4E
[
∥A′

() −B()∥1
]
.

Next, let U(1) ≤ · · · ≤ U(m) be the sorted values. Then we have A(i) = F−1
Q (U(m+1−i)) and

A′
(i) = F−1

Q (U(i)) for each i. Then by construction,

f(A,A′) =

⌊m/2⌋∑
i=1

(A(i) − A′
(m+1−i))

2
+ =

⌊m/2⌋∑
i=1

(F−1
Q (U(m+1−i))− F−1

Q (1− U(m+1−i)))
2
+.

Therefore,

E [f(A,A′)] = E

⌊m/2⌋∑
i=1

(F−1
Q (U(m+1−i))− F−1

Q (1− U(m+1−i)))
2
+

 .
And by symmetry,

E [f(A,A′)] = E [f(A′, A)] = E

⌊m/2⌋∑
i=1

(F−1
Q (1− U(i))− F−1

Q (U(i)))
2
+

 .
Therefore,

E [f(A,A′)] =
1

2
E

[
m∑
i=1

(F−1
Q (1− U(i))− F−1

Q (U(i)))
2 · 1Ei

]
where Ei is the event that i < m

2
and U(i) <

1
2
, or, i > m

2
and U(i) >

1
2
. Therefore, since each

term in the sum is bounded by 1,∣∣∣∣∣E [f(A,A′)]− 1

2
E

[
m∑
i=1

(F−1
Q (1− U(i))− F−1

Q (U(i)))
2

]∣∣∣∣∣ ≤ 1

2
E

[
m∑
i=1

1Ec
i

]
.

We can rewrite this as∣∣∣∣∣E [f(A,A′)]− 1

2
E

[
m∑
i=1

(F−1
Q (1− Ui)− F−1

Q (Ui))
2

]∣∣∣∣∣ ≤ 1

2
E

[
m∑
i=1

1Ec
i

]
.
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By definition, for each i,

E
[
(F−1

Q (Ui)− F−1
Q (1− Ui))

2
]
= Dev(Q).

Therefore, ∣∣∣E [f(A,A′)]− m

2
Dev(Q)

∣∣∣ ≤ 1

2
E

[
m∑
i=1

1Ec
i

]
≤ C ′′√m,

where the last step holds for a universal constant C ′′ by properties of the Binomial distribution,
since

m∑
i=1

1Ec
i
≤ 1 +

∣∣∣∣∣
m∑
i=1

1Ui<1/2 −
m

2

∣∣∣∣∣
and

∑m
i=1 1Ui<1/2 ∼ Binomial(m, 1

2
).

Returning to the initial calculations, then, we have∣∣∣E [f(A,B)]− m

2
Dev(Q)

∣∣∣ ≤ 4E
[
∥A′

() −B()∥1
]
+ C ′′√m.

Next we turn to bounding ∥A′
() −B()∥1. Write P̂A′ and P̂B as the empirical distributions of

A′ and of B, respectively. Then

∥A′
() −B()∥1 = mdW(P̂A′ , P̂B) ≤ mdW(P̂A′ ,Unif[0, 1]) +mdW(P̂B,Unif[0, 1]).

By bounds on the empirical 1-Wasserstein distance from Lei (2020, Corollary 5.2.) we have

E
[
dW(P̂A′ ,Unif[0, 1])

]
≤ C ′m−1/2

for a universal constant C ′, and same for P̂B. Therefore,∣∣∣E [f(A,B)]− m

2
Dev(Q)

∣∣∣ ≤ 8C ′√m+ C ′′√m,

which completes the proof.

Lemma D.27. Let Z1, Z2, . . . be an infinite sequence of i.i.d. samples from PZ . For each n ≥
2, let Zn,i be the Euclidean-nearest neighbour of Zi among {Zj : 1 ≤ j ≤ n, j ̸= i and Zj ≥ Z̃i}.
Then,

(i) Z1 − Zn,1
P→ 0, and

(ii) there exists an universal constant C0 such that for any measurable function f : R →
[0,∞) and any n,

E [f(Zn,1)] ≤ C0 E [f(Z1)] .

Proof. Let S be the support of PZ , i.e., for any z ∈ S, any open interval containing z has
strictly positive measure. Consequently, PPZ

{Z ∈ S} = 1. Take any ϵ > 0, and consider the
closed interval [Z1, Z1 + ϵ]. Note that,

P {|Z1 − Zn,1| ≥ ϵ} = E [P {|Z1 − Zn,1| ≥ ϵ | Z1}] ≤ E
[(
1− PZ

(
[Z1, Z1 + ϵ)

))n−1
]
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Since Z1 ∈ S almost surely, PZ

(
[Z1, Z1 + ϵ)

)
> 0 almost surely. Hence,

lim
n→∞

P {|Z1 − Zn,1| ≥ ϵ} = 0,

which proves the first part of the result.

a calculation7 similar to Azadkia and Chatterjee (2021, Lemma 11.5),

7Note that, in Lemma 11.5 of Azadkia and Chatterjee (2021) they work with nearest Euclidean neighbour,
while here we deal with nearest neighbour to the right. However, the argument follows in a very similar fashion.
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